Engineering and Physics Assessments of Spherical Torus Component Test Facility

Y.-K.M. Peng¹, C.A. Neumeyer², Y. Takase³, L. El-Guebaly⁴, E.T. Cheng⁵ et al.

¹Oak Ridge National Laboratory, Oak Ridge, Tennessee, <u>mpeng@pppl.gov</u> ²Princeton Plasma Physics Laboratory, Princeton, New Jersey, <u>cneumeyer@pppl.gov</u> ³University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan, <u>takase@phys.s.u-tokyo.ac.jp</u> ⁴University of Wisconsin, Madison, Wisconsin, <u>elguebaly@engr.wisc.edu</u> ⁵TSI Research, Inc., Solano Beach, California, <u>etcheng@cts.com</u>

The results of a broadly based study of the engineering and physics characteristics of the Component Test Facility (CTF) [1] using the Spherical Torus or Spherical Tokamak (ST) configuration [2] are presented. The required testing capabilities [3] of the CTF of high fusion neutron fluxes W_L of > 1 MW/m², large total testing area of > 10 m², and intense testing fluence of > 0.3 MW-yr/m² per year are found to set lower bounds on the CTF size (see Figure). Testing of tritium self-sufficiency further pushes the aspect ratio toward 1.4. A typical CTF design is characterized by R = 1.2 m, A = 1.5, elongation = 3, $I_p = 10$ MA, $B_T = 2.5$ T, producing a fusion power of 77 MW and W_L of 1 MW/m², assuming moderate normalized ST plasma parameters achievable [4] without active feedback control of MHD modes, while using $P_{NBI} = 24$ MW at $E_{\text{NBI}} = 120 \text{ kV}$. Assumption of the advanced physics regime with MHD mode stabilization, while using $P_{NBI} = 24$ MW at $E_{NBI} = 330$ kV, would enable $W_L = 4$ MW/m² for testing at the level of demonstration power plants. The ST CTF device requires the use of a single-turn normal conducting center leg for the toroidal field coil without the induction solenoid and substantial neutron shielding. A solenoid-free current start-up RF power of 5 - 10 MW, and a ramp-up and sustainment RF and NBI power of 40 MW are estimated, based on latest data. A new systems code that combines the key physics and engineering requirements, limits, and performance of CTF are prepared and utilized as part of this study. The results show a high potential for a family of CTF devices to suit a variety of fusion nuclear testing and R&D missions. *Support by DOE Contract Nos. DE-AC02-76CH03073 & DE-AC05-96OR22464.

Figure. Elevation and mid-plane views of CTF showing the possible design features dictated by CTF mission.

- [1] E.T. Cheng et al., Fusion Engineering Design, **38** (1998) 219.
- [2] Y.-K.M. Peng, Phys. Plasmas, 7 (2000) 1681.
- [3] M. Abdou et al., Fusion Technology, 29 (1999) 1.
- [4] E. Synakowski et al., Nucl. Fusion, **43** (2004) 1653.