Z-Pinch Power Plant Shock Mitigation Experiments, Modeling, and Code Assessment

Sal B. Rodríguez, Vince Dandini, Virginia Vigil, Dave Louie*, and Matt Turgeon

September 16, 2004

Sandia National Laboratories * Omicron

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Introduction

- Problem Statement
- Aluminum Foam Experiments
- Analytic Models
- Aluminum Foam Simulations
- Conclusion

Problem Statement

- Mitigate the powerful shock wave that is generated inside the Z Pinch Power Plant.
- Fusion of deuterium-tritium pellets: ${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + {}^{1}_{0}n + E$
- Each D-T capsule will release about 3 gigajoules (and perhaps more...).
- This is the equivalent energy released by a 1,500-lb bomb...
- ... Or 1,911 jelly doughnuts.
- As a first step, we will conduct shock experiments to
 - Obtain data with which to benchmark structural analysis codes.
 - Explore the feasibility of metal foams as a shock mitigation medium in IFE chambers.
 - Validate EOS and constitutive equations.

- The University of Wisconsin has already done shock experiments on thin liquid-water films.
- Metal foam appears promising in terms of shock mitigation. Consequently, we conducted a series of shock tests at the Shock Tube Facility in the UW.
- A variety of porosities, materials, test configurations, and shock wave magnitudes are being considered.
- 20.3-cm thick samples will be tested in about three weeks. Because they are thicker, they will be subjected to higher shocks.
- A foamed thick-liquid water experiment will also be conducted.

Metal Foam Shock Mitigation Tests

- Purpose
 - Provide data to benchmark codes
 - Explore feasibility as a shock mitigation medium
- Test specimens
 - 6101-T6 Aluminum
 - 10, 20, 40 ppi
 - 2.54 cm thick
- Performed at WiSTL
 - Single and dual layers

Metal Foam Shock Mitigation Tests

- Single layer
 - 1.45 Ma Sample failure
 - 1.34 Ma
 - Reflections subsonic
 - Transmitted shocks : 1.19-1.20 Ma
 - Deformation
 - 20, 40 ppi 31% 38%
 - 10 ppi 8%
- Double layer 1.34 Ma
 - Transmitted shocks: 1.14, 1.16 Ma
 - Deformation
 - Top: 21& & 25%
 - Lower: 24% & 48%
 - 48% deformation
 - Off center
 - 1" separation
 - Intra-layer reflections?

Central Vertical Deformation

Metal Foam Shock Mitigation Tests

Test	Sample No.	Porosity	Configuration	Trans. Shock	Central Deformation
		(ppi)		(Ma)	(cm / %)
4	3	40	Single layer	No	Material failed
			(Ma 1.45)	uala	
6	5	40	Single layer	1.19	0.961 / 38
7	10	40	Single layer	1.20	0.777 / 31
8	6 & 7	40	2 layer	1.14	0.538 / 21
			3" separation		0.593 / 24
9	8 & 9	40	2 layer	1.16	0.618 / 25
			1" separation		1.20 / 48*
10	2	20	Single layer	1.20	0.840 / 33
11	1	10	Single layer	1.19	0.212/8

* Off-center deformation in lower layer.

Code Selection and Analytic Models

- We will use ALEGRA, ABACUS, BUCKY, CTH, and DYNA2D to simulate Shock Tube Test 6.
- We will investigate the following models, and perhaps others:
 - Mie-Grüneisen US UP (EOS)
 - Elastic Plastic Power Law Hardening (constitutive equation)
 - P-α (constitutive equation appropriate for void fractions less than 20%)

Analytic Models

- Mie-Grüneison (MG) US UP EOS Model:
 - Pressure

$$P(\rho, E) = P_H(\rho) + \Gamma_0 \rho_i [E - E_H(\rho)]$$

- Energy

$$E(\rho,T) = E_H(\rho) + C_v[T - T_H(\rho)]$$

- Shock and Particle Velocity

 $U_{S} = C_{O} + S_{1}u_{P}$

(P_H = Hugoniot pressure, E_H = Hugoniot energy, T_H = Hugoniot temperature, T = material temperature, E = material energy, P = material pressure, ρ_i = initial density, ρ = density, Γ_0 = Grüneisen parameter, C_V = specific heat, U_S = shock velocity, c₀ = bulk sound speed, S₁ = slope of the U-u Hugoniot, and u_P = particle velocity.)

•In ALEGRA, the MG model can be easily modified to incorporate the P- α model.

Analytic Models

 C_L = compressive wave velocity, C_S = shear wave velocity,

 C_0 = bulk sound speed, B = bulk modulus,

G = shear modulus, E = Young's modulus,

v = Poisson's ratio, A ~ 1, E₀ and ρ_0 pertain to solid.

Relationship Between Effective Density and the U-u Hugoniot.

Analytic Models

• Stress-Strain Model: Elastic, Perfectly Plastic with Lüders Strain.

$$\sigma = \sigma_{ys} + C(\varepsilon^P - \varepsilon^L)^n$$

 σ = effective stress

 σ_{vs} = initial yield stress

- ε^P= equivalent plastic strain
- ε^L= Lüders strain
- C, n = material constants

Analytic Models

Elastic, Perfectly Plastic with Lüders Strain Hardening

Model Material Properties

40 PPI Aluminum Foam Material Properties.

Property	Value	Source	
Young's modulus	452e6 N/m ²	Reference 2 (data/Gibson-Ashby Equations)	
Poisson's ratio	0.33	Reference 6.	
Yield stress	1.4e6 N/m ²	Reference 2 (data/Gibson-Ashby Equations)	
Lüders strain	0.002	Reference 8.	
Hardening exponent	0.2	Reference 8.	
Hardening constant	1.00e09 dyne/cm ²	Reference 8.	
Initial density	226 kg/m ³	8.1% of value in Reference 5.	
C ₀	1,928.3 m/s	Derived from Reference 5 using initial density.	
S1	1.338	Reference 5.	

2. T. G. Nieh, K. Higashi, and J. Wadsworth, "Effect of Cell Morphology on the Compressive Properties of Open-Cell Aluminum Foams", Materials Science & Engineering, A283, 105 – 110, 2000.

4. Paul W. Cooper, "Explosives Engineering", Wiley-VCH, Inc, 1996.

6. Michael F. Ashby et al, "Metal Foams A Design Guide", Butterworth-Heinemann, 2000.

8. Charles M. Stone, Gerald W. Wellman, and Raymond D. Krieg, "A Vectorized Elastic/Plastic Power Law Hardening Material Model Including Luders Strain, Sandia National Laboratories, Sand90-0153, March 1990.

ALEGRA Simulation of Test 6.

Comparison of Data vs. ABAQUS, ALEGRA, and CTH.

Parameter	Data	ABAQUS	ALEGRA	СТН
Max. Displacement (m)	0.00961	0.0110	0.0105	0.0075
Max. Foam Velocity (m/s)	Not measured	12.0	7.4	8.75

- The shock experiments show that foamed metal can be used to mitigate shocks.
- Analyses of the data indicate that because the shocks were mild, u_p was small, as evidenced by the small change in the calculated density and hand-calculation of the particle velocity via the U-u Hugoniot.
- Because the shock was mild, the magnitudes of the compressive and expansive waves were small.
- The foam absorbed a small fraction of the shock energy because part of the shock wave encountered air-filled cells (as opposed to aluminum filaments).

Conclusion

- The elastic plastic power law hardening constitutive equation and MG US UP EOS are suitable for modeling metallic foam. The P-α model is not suitable for our study because its usage is limited to void fractions less than 20%.
- The ALEGRA, ABAQUS, and CTH results show that the codes were able to calculate the displacement with reasonable success.

