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Fusion Materials Science Mission Statement

» Advance the materials science base for the development of
innovative materials and fabrication methods that will establish the
technological viability of fusion energy and enable improved
performance, enhanced safety, and reduced overall fusion system
costs so as to permit fusion to reach its full potential

* Assess facility needs for this development, including opportunities
for international collaboration

* Support materials research needs for existing and near-term devices

Performing institutions

Oak Ridge National Lab

Pacific Northwest National Lab
Lawrence Livermore National Lab
UC-Berkeley

UC-Santa Barbara

UC-Los Angeles

Princeton University

Rennselaer Polytechnic Insititute
Washington State University
Merrimack College



US Fusion Materials Research Portfolio

Material FY04 ITER Program leverage
effort relevance
(%) (incl. TBM)
Crosscutting theory & 25% 60% BES, NSF, ASCI
modeling
Ferritic/martensitic/ODS 28% 80% DOE-NE (Gen IV, INERI,
steel AFCI), JAERI, NRC, BES,
LDRD
S1C/SiC 21% 40% DOE-NE (Gen IV, NERI),
DOE-NR, JUPITER-II, PBMR
V alloys 15% 10% NASA JIMO, NASA SRTP,
JUPITER-II
Functional materials 5% 40% DOE-NR (refractory alloys)
(MHD insulators, Cu,
ductile Mo alloys, etc.)
ITER machine R&D 4% 100%
Neutron source 2% 0




New 1nteratomic potentials have been developed for
vanadium and Fe-He, based on first-principles simulations

Fe-He Calculations: Unexpected stability of tetrahedral site arises from magnetic

interaction
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Molecular Dynamics simulations have found the primary
damage formation 1s similar for fission and fusion neutrons

* subcascade formation leads to asymptotic behavior at high energies
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Direct formation of SFTs in Cu displacement cascades based
on molecular dynamics simulations

L=1.3 nm
L=2.3 nm
QuickTime™ and a QuickTime™ and a
Planar RGB decompressor PNG decompressor
are needed to see this picture. are needed to see this picture.

 Nearly perfect SFTs are formed in cascades within ~50 ps
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Tensile Properties of Neutron-irradiated V-4Cr-4Ti

Effect of Irradiation Temperature on the
Uniform Elongation of V-(4-5%)Cr-(4-5%)Ti Alloys
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Low Temperature Radiation Hardening is Important
in Ferritic/martensitic steel up to ~400°C

Representative USDOE/JAERI F82H Data:
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Radiation hardening in Fe-(8-9%Cr) steels

8-9Cr Steels: Yield Strength as Function
of Temperature, 0.1 - 94 dpa
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(a)

(b)

Deformation microstructures in neutron-irradiated
Fe-8Cr-2WVTa ferritic/martensitic steel (F82H)
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Fig. 1 Stress-strain curves of F82H BM (a) and TIG (b)
irradiated at 573K and 773K in tests at RT
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Irradiated weld metal (lower radiation hardening) did not
exhibit dislocation channeling after deformation

-
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Dislocation channel interactions in Fe deformed
following neutron irradiation at 70°C to 0.8 dpa
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TEM In-situ deformation: dislocation/defect cluster interactions

SFT

annihilation

by a single R ——
dislocation

Dislocation pinning
by small SFTs (no
annihilation)

Understanding why annihilation
sometimes does not occur is key
for developing improved fusion
materials

QuickTime™ and a Planar RGB decompressor are needed to see this picture
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MD simulation of dislocation interaction with 8 nm SFT in Cu

QuickTime™ and a
PNG decompressor
are needed to see this picture.



Fracture Mechanics Master Curve for F82H

Constraint Loss and SSV (ASTM) adjustments produces a homogeneous self-

Ferrritic/martensitic Steel

consistent dataset with a common ASTM E1921 T = -103°C
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Eurofer 97 Ferritic/martensitic steel Fracture Toughness:
Size effects and Constraint Study

« UCSB collaboration with Rensman (NRG) and Yasuda (JAERI)
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— Statistical scaling 1s evident
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Master Curve Shifts (AT ) and He Effects

Modeled irradiation hardening (Ac,) induced 400
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Tensile Stress (MPa) .

SIC/SiC Composites Development

Reference Chemical Vapor Infiltrated (CVI) Composites for Irradiation Studies

e Hi-Nicalon™ Type-S or Tyranno™-SA3 / PyC(50-150nmt) / CVI-SiC composites have
been selected as the reference materials

e Materials are under fabrication in US/Japan collaboration

» Extensive data generation for irradiated properties (including statistical strength) is
planned.
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Swelling / %

Irradiation Effect Studies in SiC/SiC
Composite Properties

» Various mechanical and thermo-physical properties of irradiated SiC/SiC composites are

being evaluated.

» Swelling, thermal conductivity, elastic modulus, tensile strength, shear strength, etc.
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experiment

Midpoint displacement (mm)

model

Midpoint Displacement (mm)
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Micromechanical Modeling Allows Prediction of
Component Lifetime of Ceramic Composites

Model verification
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Radiation Induced Conductivity for different grades of SiC:
Electrical Conductivity varies by 8 orders of magnitude!
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Compatibility Study
SiC / Pb-Li Static Compatibility

e Good compatibility was observed between monolithic SiC and Pb-17Li at 800" and 1100 C
in a static capsule test up to 1000h.

» Planned work includes chemical composition measurement of the Pb-Li after the capsule
test and characterization of SiC specimens.

800°C: No wetting, no mass change

outer capsule /“”’ Tl p
Mo capsule "

:-
Mo wire spacer :

~= SiC crucible & lid

~ SiC crucible |

SiC specimen holder

CVD SiC specimen
Al,O5 spacer

- Pb-Li sic specimen holder
SiC lid
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Irradiation / Collaboration Programs
Coverage of Irradiation Condition by
Recently completed, On-going, and Planned Programs

¢ |Planned irradiation programs cover
most of the conditions of interest for
near-term ITER Test Blanket.

e |Data to be obtained will focus on
fundamental and scientifically
valuable properties.




Overview of Radiation Effects Experiments

Program | Irrad. Materials Irrad. conditions [rrad. Irrad.
Capsule start finish
JAERI |JP26 gHFIR Ferritic steel |9 dpa Dec. 03 | Sep. 04
target 300, 400, 500°C
“ JP27 SHFIR Ferritic steel |23 dpa Apr. 04 | June 06
target 300, 400, 500°C
“ JP28 SHFIR Ferritic steel | 50 dpa Oct. 04 | Mar. 09
target 300, 400, 500°C
“ JP29 gHFIR Ferritic steel | 50 dpa Oct. 04 | Mar. 09
target 300, 400, 500°C
“ RB15J (Eu | Ferritic steel | 6 dpa Sep. 05 | Apr. 07
shield) 300, 400, 500°C
“ RB16J Ferritic steel | 6 dpa June 05 | Nov. 06
300, 400, 500°C
Jupiter-1I | RB17J (Eu |V alloys & 6 dpa Apr. 04 | Aug. 05
Shleld) MHD 1nsul. 425, 600, 700°C
“ RB18J S1C and 8 dpa Apr. 05 | June 06
S1C/S1C

600, 900, 1100°C




Friction Stir Welding may enable joining of numerous
advanced materials (ODS steels, He-containing metals, etc.)

y

Work piece

W-alloy Ir-alloy

Tool shoulder

a  Unaffected material

b Heat affected zone (HAZ)

Backing bar ¢ Thermomechanically

afiected zone (TMAZ)

d Weld nugget (Part of
thermomechanically affected

zone)
Sketch provided by TWI

Profiled pin

SS304 stainless steel

* FSW uses a rotating tool that is translated along the joint to create solid-state
bonding by thermo-mechanically working the material.

* Currently, FSW i1s used to weld low-melting temperature materials such as Al
alloys using tool steel for tool material.

* The challenge is to develop tool materials that can weld high-temperature alloys
such as steels, Ti alloys, Ni-based superalloys. Recent developmental studies at
ORNL have created several tool materials that successfully welded stainless steel



Conclusions

* The US fusion materials program is increasing activities related to
ITER (machine and test blanket modules)

 Underlying deformation and fracture mechanisms at low
temperatures are currently of high interest (due to ITER
environment)

» High temperature deformation and fracture (He embrittlement) 1s
also of major concern, but is not a major activity due to funding
limitations

 SiC/S1C composite R&D has progressed from initial qualitative
screening studies to measurement of engineering-relevant
mechanical properties (unirradiated and irradiated)
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