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Outline

• Summary of ARIES-CS engineering plan of action

• Ceramic breeder modular design layout

• Power cycle selection: Brayton cycle

• Optimization studies

• Conclusions



September 14-16, 2004/ARR 3

Engineering Activities During Phase I of ARIES-CS 
Study

• Perform Scoping Assessment of Different Maintenance Schemes 
and Blanket Concepts for Down Selection to a Couple of 
Combinations for Detailed Studies During Phase II

- Three Possible Maintenance Schemes:
1. Field-period based replacement including disassembly of modular coil system 

(e.g. SPPS, ASRA-6C)
2. Replacement of blanket modules through small number of designated 

maintenance ports (using articulated boom)
3. Replacement of blanket modules through maintenance ports arranged between 

each pair of adjacent modular coils (e.g. HSR)

- Different Blanket Configurations 
1. Self-cooled flibe blanket with advanced ferritic steel
2. Self-cooled Pb-17Li blanket with SiCf/SiC composite as structural material
3. Dual-Coolant blanket concept with He-cooled steel structure and self-cooled 

liquid metal (Li or Pb-17Li) 
4. Helium cooled ceramic breeder blanket with ferritic steel structure
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Considerations on Choice of Module Design and 
Power Cycle for a Ceramic Breeder Concept

• The blanket module design pressure impacts the amount of structure required, 
and, thus, the module weight & size, the design complexity and the TBR.

• For a  He-cooled CB blanket, the high-pressure He will be routed through 
tubes in the module designed to accommodate the coolant pressure. The 
module itself under normal operation will only need to accommodate the low 
purge gas pressure  (~ 1-10 bar).

• The key question is whether there are accident scenarios that would require the 
module to accommodate higher loads. If coupled to a Rankine Cycle, the 
answer is yes (EU study):
- Failure of blanket cooling tube + subsequent failure of steam generator tube can lead 

to Be/steam interaction and safety-impacting consequences.
- Not clear whether it is a design basis (<10-6) or beyond design basis accident (passive 

means ok). 

• To avoid this and provide possibility of simpler module and better breeding, we 
investigated the possibility of coupling the blanket to a Brayton Cycle.
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Low-Pressure Requirement on Module Leads to 
“Simpler” Design

• Modular box design with coolant 
flowing through the FW and then 
through the blanket
- 4 m (poloidally) x 1 m (toroidally) 

module
- Be and CB packed bed regions 

aligned parallel to FW
- Li4SiO4 or Li2TiO3 as possible CB

• In general modular design well 
suited for CS application
- accommodation of  irregular first 

wall geometry 
- module size can differ for different 

port location to accommodate port 
size

FW cooling 
channel

Stiffening plate

Be pebble beds

Breeder 
pebble beds



September 14-16, 2004/ARR 6

Arrangement of the Breeder and Beryllium 
Pebble Beds

• Inside the breeding zone, each 
breeder bed is enclosed by two 
cooling plates.

• This assembly is filled outside 
the blanket box with ceramic 
pebbles, and closed. 

• All the cooling plates are 
welded to larger manifold plates 
before inserting the breeding 
zone into the blanket box. 

• Beryllium pebbles are filled into 
any empty space inside the box, 
and compacted by vibrating the 
module.

- Use of ODS FS in high temperature 
location would allow for higher 
temperature and cycle efficiency. 

- Joining is a key issue because of 
difficulty of producing high strength 
welds with ODS FS.
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Access Tube + Shielding Plug (~3% fractional coverage) 
for Cutting Tube Prior to Removing Blanket Module

Blanket
Permanent 
Shield

Shielding plug

• Cut the assembly weld in the front disk at 
the FW first.

• Pull out the shielding plug with inner tube.

• Cut the outer tube weld located behind the 
permanent shield.

• Open/Remove the attachment bolts.

• Pull out the blanket module.
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Pull out first the Closing Plugs from access port
• Open and remove the first and second doors.

• Cut the coolant access tubes from back.

• Pull out the closing plug and insert the articulated boom 
into the plasma region.

The boom has to be equipped with two classes of tools:
• Tools for opening attachment bolts, inserted from the 

plasma region through radial gaps between the modules.

• Tools for cutting/re-welding the front disk at the FW as 
well as the coolant access tubes at the back of blanket 
module.

Remove other blanket modules
• Cut the weld in the front disk at the module FW and 

remove module shielding plug.

• Cut the weld of the coolant access tubes at the back of 
blanket. 

• Remove the attachment bolts.

Steps to be Performed for an Exchange 
of Ceramic Breeder Blankets*

* See X.R. WANG, S. MALANG, A.R. RAFFRAY and the ARIES Team, 
“Maintenance Approaches for ARIES-CS Power Core,” 16th TOFE
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Ceramic Breeder  Blanket Module Configuration
• Number and 

thicknesses of Be and 
CB regions optimized 
for tritium breeding 
(TBR≥1.1) and high 
cycle efficiency for 
given wall load based 
on:
- Tmax,Be < 750°C
- Tmax,CB < 950°C
- Tmax,FS < 550°C

(<700°C  for ODS)
- kBe=8 W/m-K
- kCB=1.2 W/m-K
- δCB region > 0.8 cm

• 6 Be regions + 10 
CB regions for a 
total module radial 
thickness of 0.65 m*

• He flows through the FW cooling tubes in 
alternating direction and then through 3-
passes in the blanket

* See L. EL-GUEBALY, et al., and the ARIES Team, “Benefits of Radial Build Minimization 
and Requirements imposed on ARIES Compact Stellarator Design,” 16th TOFE
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Two Example Brayton Cycle Configurations Considered

- Blanket outlet He is mixed with 
divertor outlet He (assumed at 
~750°C and carrying ~15%of total 
thermal power) and then flown 
through HX to transfer power to the 
cycle He with ∆THX = 30°C 

- Minimum He temperature in cycle 
(heat sink) = 35°C 

- ηTurbine = 0.93; ηCompressor = 0.89; 
εRecuperator = 0.95

- Total compression ratio  < 2.87

IP LPHP
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Brayton I:
- A more conventional 

configuration with 3-
stage compression + 2 
inter-coolers and a single 
stage expansion
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Brayton II*
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*P.F.PETERSON, "Multiple-Reheat Brayton Cycles for 
Nuclear Power Conversion With Molten Coolants," 
Nuclear Technology , 144, 279 (2003). 
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Comparison of T-S Diagrams of Brayton I and Brayton II
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Brayton II:
• 4-stage compression + 3 

inter-coolers and 4-stage 
expansion + 3 re-heaters

• More severe constraint on 
temperature rise of blanket 
coolant
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Example Optimization Study of CB Blanket and Brayton Cycle
• Cycle Efficiency (η) as a 

function of neutron wall load 
(Γ) under given constraints

• For a fixed blanket thickness 
(∆blkt,radial) of 0.65 m (required 
for breeding), a maximum Γ
of 5 MW/m2 can be 
accommodated with: 
Tmax,FS<550°C; η ~ 35%
Tmax,FS<700°C; η ~ 42%

• The max. η corresponds to Γ
~3 MW/m2:
Tmax,FS<550°C; η ~ 36.5%
Tmax,FS<700°C; η ~ 44%

• The max. η ~ 47% for Γ ~3 
MW/m2 for Brayton II.

• However, as will be shown, 
Ppump/Pthermal is unacceptably 
high in this Brayton II case.
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Corresponding He Coolant Inlet and Outlet Temperatures
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Ppump/Pthermal<0.05; q''plasma=0.5 MW/m2; ∆blkt,radial  =0.65m

• Difference in blanket He 
inlet and outlet temperatures 
much smaller for Brayton II 
because of reheat HX 
constraint
- Major constraint on 

accommodating temperature 
and pressure drop limits
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Corresponding Maximum FS Temperature

• For lower Γ (<~3 MW/m2), 
Tmax,FS limits the 
combination of blanket 
outlet and inlet He coolant 
temperatures

• For higher Γ(>~3MW/m2),  
Tmax,CB and Tmax,Be limit 
the combination of blanket 
outlet and inlet He coolant 
temperatures
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Corresponding Ratio of Pumping to Thermal Power for Blanket 
He Coolant
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• An assumed limit of
Ppump/Pthermal < 0.05 can be 
accommodated with 
Brayton I.

• With Brayton II the 
smaller coolant  
temperature rise requires 
higher flow rate (also for 
better convection) and 
Ppump/Pthermal is much 
higher particularly for 
higher wall loads

• On this basis, Brayton II 
does not seem suited for 
this type of blanket as the 
economic penalty 
associated with pumping 
power is too large
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Effect of Changing Blanket Thickness on Brayton Cycle Efficiency
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• Decreasing the total 
blanket thickness to 
from 0.65 m to 0.6 m 
allows for 
accommodation of 
slightly higher wall 
load, ~ 5.5 MW/m2

and allows for a gain 
of 1-2 points in cycle 
efficiency at a given 
neutron wall load

• But is it acceptable 
based on tritium 
breeding?
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Effect of Changing the Plasma Surface Heat Flux on Brayton I 
Cycle Efficiency
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• The efficiency decreases 
significantly with 
increasing plasma 
surface heat flux.

• This is directly linked 
with the decrease in He 
coolant temperatures to 
accommodate max. FS 
temp. limit in the FW 
(700°C).

• Challenging to 
accommodate this 
design with a Brayton 
cycle for plasma heat 
flux much higher than 
0.5 MW/m2.
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Conclusions
• A He-cooled CB concept has been evolved in combination with a Brayton power cycle 

- This avoids the potential safety problem associated with steam generator failure in the case of a 
Rankine cycle.

• Reduced activation FS is used as structural material in regions where the temperature is 
<550°C and ODS FS in regions where the temperature is higher (but  <700°C)
- A key issue which must be addressed is the joining of ODS FS.

• A TBR of 1.1 is achievable for a total blanket thickness of 0.65 m. 
• The design can accommodate a neutron wall load of up to 5-5.5 MW/m2 and a surface 

heat flux of 0.5 MW/m2 with corresponding cycle efficiencies of up to 42% for a Brayton
cycle with 3-stage compression and one-stage expansion. 
- The maximum FS temperature limit in the FW makes it very challenging to accommodate 

higher surface heat fluxes. 
- The cycle efficiency can be increased to ~47% for a more advanced 4-stage compression, 4-stage 

expansion Brayton cycle. 
- However, the pumping power requirement is unacceptably large, effectively ruling out such a 

cycle for this application.

• Credible fabrication and assembly processes have been evolved for a port-based 
maintenance scenario. 

• This study provides the information required for the ARIES-CS Phase I design 
assessment and down-selection to a couple of concepts for the more detailed studies 
planned for Phase-II.
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Results of ARIES-CS Phase I Effort Presented at 16th TOFE 
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