Neutronics Assessment of Molten Salt Breeding Blanket Design Options

Mohamed Sawan

Fusion Technology Institute University of Wisconsin, Madison, WI

S. Malang, Consultant, Germany C.P.C. Wong, General Atomics M.Z. Youssef, UCLA

1

Neutronics Assessment

Three blanket concepts analyzed 1.Self-cooled Flinabe blanket (Flinabe/Be/FS)- [SC] 2.Dual coolant blanket with Be (Flibe/He/Be/FS)- [DC-Be] 3.Dual coolant blanket with Pb (Flibe/He/Pb/FS)- [DC-Pb] The RAFS alloy F82H used as structural material Same reactor configuration and power loadings used ► Water cooled steel VV and shield ➤1D calculations with IB and OB blankets modeled simultaneously Several iterations made to determine radial build that achieves adequate tritium breeding and shielding for VV and magnet >Larger margins are considered to account for uncertainties resulting from approximations in modeling >Multi-dimensional calculations are being performed to accurately model the blanket

Molten Salt Blanket Options

Blanket Radial Build

	SC Flinabe	DC Flibe/He	DC Flibe/He	
	Be	Be	Pb	
Blanket	50 cm OB	65 cm OB	65 cm OB	
Thickness	40 cm IB	40 cm IB	40 cm IB	
Multiplier	7 cm	5 cm	5 cm	
Zone	60% Be	60% Be	87% Pb	

Same TBR can be achieved with a thinner SC OB blanket compared to the DC blanket with large He amount

- To achieve the same TBR a smaller Be zone thickness (5 cm) is required in the DC design with Flibe compared to the SC with Flinabe (7 cm)
- In the DC design more Pb is needed than Be although the Be is pushed farther from FW by the Flibe poloidal flow channel required to cool it

Tritium Breeding Potential

- If neutron coverage for double null divertor is 12% the overall TBR will be ~1.13 excluding breeding in divertor region. Breeding in divertor zone could add ~0.06
- The blanket design concepts have the potential for achieving tritium self-sufficiency. Some design parameters can be adjusted (e.g., multiplier thickness, blanket thickness, etc) to insure tritium self-suffiency if needed

Blanket Energy Multiplication

Using Be yields higher
 blanket energy
 multiplication

- 1.27 for SC blanket with Be
- 1.21 for DC blanket with Be
- 1.13 for DC blanket with Pb

Nuclear Heating Determined in Blanket Components

Peak Radiation Damage Parameters in FW Structure (OB Midplane)

	SC	DC-Be	DC-Pb
dpa/FPY	76.4	74.8	84.2
He appm/FPY	1005	983	922

Based on 200 dpa damage limit blanket lifetime is ~2.4 FPY

Peak Radiation Damage Parameters in Shield (IB Midplane)

	SC	DC-Be	DC-Pb
dpa @30 FPY	18	33	41
He appm @30 FPY	100	183	213

Shield is expected to be lifetime component with a large margin

Total Tritium Production in Be (for 2.4 FPY blanket life)

	SC	DC-Be
IB	0.78 kg	0.46 kg
OB	2.19 kg	1.34 kg
Total	2.97 kg	1.80 kg

 Modest amount of tritium produced in Be
 Tritium inventory will be much smaller depending on temperatures

Shielding Requirement

- Radial build determined to insure that radiation limits are satisfied with adequate margins
 - Shield is lifetime component (<200 dpa)
 - VV is reweldable (<1 He appm)
 - Magnet adequately shielded (<10¹⁰ Rads)

Peak VV Damage Parameters

	SC		DC-Be		DC-Pb	
	IB	OB	IB	OB	IB	OB
Peak end-of-life dpa	0.035	0.007	0.065	0.029	0.07	0.03
Peak end-of-life He appm	0.21	0.04	0.38	0.16	0.45	0.17

Peak Magnet Damage Parameters (IB)

	SC	DC-Be	DC-Pb	Design Limit
Peak Nuclear Heating (mW/cm ³)	0.14	0.35	0.29	1
Peak end-of-life Fast Neutron Fluence (n/cm ²)	$1.3 \mathrm{x} 10^{18}$	2.8×10^{18}	2.8×10^{18}	10 ¹⁹
Peak end-of-life Dose to Insulator (Rads)	3.1×10^{9}	7.6×10^9	6.6x10 ⁹	10 ¹⁰
Peak end-of-life dpa to Cu Stabilizer	9.0x10 ⁻⁴	2.1×10^{-3}	2.0×10^{-3}	6x10 ⁻³

- Shielding effectiveness of DC blanket(with He) is lower than SC blanket
- ➢ With same IB radial build damage parameters in shield, VV, and magnet are a factor of ~2 lower with the SC blanket
- >DC designs with Be and Pb result in comparable radiation damage parameters

Dual-Coolant Concept has Attractive Features

- Self-cooled concept have limited thermal capabilities restricting NWL that can be handled while meeting temperature limit of 550°C for RAFS. Advanced ODS ferritic steels (NCF) should be used to yield attractive performance with high thermal efficiency
- Dual-coolant concept allows for large exit coolant temperature while satisfying all temperature requirements for near term RAFS
- Performance of the dual-coolant concept with Be multiplier investigated further with low melting point Flibe (LiBeF₃) and Flinabe to avoid the need for ODS steel coating and eliminate molten salt freezing

Tritium Breeding Potential

- 50% Li-6 enrichment used for DC blanket with low melting point Flibe
- For similar TBR with Flinabe Be zone thickness increased to 8 cm and enrichment increased to 60% Li-6
- Local TBR for both designs is 1.287
- With 12% neutron coverage for double null divertor, overall TBR will be ~1.13 excluding breeding in divertor region that could add ~0.06

Nuclear Heating

Nuclear energy multiplication is 1.223 with LiBeF₃

Nuclear energy multiplication is 1.247 with Flinabe

Higher M in Flinabe blanket that uses more Be

Shield is lifetime component

Peak cumulative end-of-life damage:

•17.2 dpa with LiBeF₃

•19.1 dpa with Flinabe

Using Flinabe results in a slightly lower blanket shielding capability

VV is Reweldable

Peak end-of-life He production in VV:
0.21 appm with LiBeF₃
0.23 appm with Flinabe

All Magnet Radiation Limits Satisfied

Peak end-of-life magnet insulator dose:
 •3.6x10⁹ Rads with LiBeF₃
 •3.9x10⁹ Rads with Flinabe

3-D Neutronics Modeling

- 3-D neutronics performed for the DC blanket with LiBeF₃ to check impact of 3-D geometrical effects and blanket heterogeneity on overall TBR
- Neutron source sampled from Dshaped plasma using a peaked distribution at magnetic axis
- The model includes detailed heterogeneous geometrical configuration of IB and OB blanket sectors
- 3-D model used a conservative assumption by including watercooled steel with 1 cm tungsten armor in the double null divertor region

3-D TBR Calculation

- Total TBR is 1.07 (0.85 OB, 0.22 IB). This is conservative estimate (no breeding in double null divertor covering 12%)
- Minor design modifications such as increasing Be zone and/or blanket thickness can be made to enhance TBR if needed to ensure tritium self-sufficiency. Increasing Be zone from 5 to 6 cm increases TBR to 1.09
- 3-D modeling and heterogeneity effects resulted in ~6% lower TBR compared to estimate based on 1-D calculations

Summary

- ➤The overall TBR for dual-coolant blanket with 5 cm Be zone and no divertor breeding will be ~1.07 based on 3-D calculations
- Minor design modifications can be made to enhance the TBR if needed to ensure tritium self-sufficiency
- ≻Be yields higher blanket energy multiplication compared to Pb
- Modest amount of tritium is produced in the Be (~3 kg) over the blanket lifetime of ~3 FPY
- Using He gas in the dual-coolant blanket results in about a factor of 2 lower blanket shielding effectiveness compared to SC blanket
- With total blanket/shield/VV radial build of 105 cm in IB and 120 cm in OB it is possible to ensure that shield is lifetime component, VV is reweldable, and magnets are adequately shielded
- ➤We conclude that molten salt blankets can be designed for fusion power plants with neutronics requirements such as adequate tritium breeding and shielding being satisfied

