

EU Blanket Design Activities and Neutronics Support Efforts

<u>U. Fischer^a</u>, P. Batistoni^b, L. V. Boccaccini^a, L. Giancarli^c, S. Hermsmeyer^a, Y. Poitevin^c

^{a)}Forschungszentrum Karlsruhe, Germany ^{b)}ENEA Fusion Division, Frascati, Italy ^{c)}CEA Saclay, France

16th Topical Meeting on the Technology of Fusion Energy, Madison, Wisconsin, USA, September 14-16, 2004

Outline

- Introduction
- Blanket Design Description
- Neutronics Design Analyses
- Supporting Neutronics Activities
- Conclusions

Introduction

EU Fusion Technology Programme considers two development lines of a breeding blanket:

- Helium-Cooled Pebble Bed (HCPB) blanket with Lithium ceramics pebbles (Li₄SiO₄ or Li₂TiO₃) as breeder and beryllium pebbles as neutron multiplier
- Helium-Cooled Lithium-Lead (HCLL) blanket with the Pb-Li eutectic alloy as breeder and neutron multiplier

Blanket design and related R&D efforts are based on the use of the same coolant (Helium gas) and modular blanket structure to minimise the development costs as much as possible.

Design Requirements

- Tritium Breeding Ratio (TBR) ≥ 1.10 (3D-calculation)
- Modular blanket structure
 - Large Modules of 2 m x 2m (torodial x poloidal) which can be installed and removed through horizontal ports
 - Common module box that can withstand 8 Mpa (in-box LOCA)
- He (8 MPa) for cooling module box and breeder/multiplier
- ITER-like elongated single-null plasma configuration
 - Neutron wall loading of 2.0/2.4 MW/m² (average/ peak value)
 - Surface heat load of 0.4/0.5 MW/m²
 - Blanket lifetime of 20,000 h full power
 - 2 mm tungsten layer as first wall protection

Modular Blanket Box

Association FZK-Euratom

He coolant flow scheme

- First pass: First Wall and side walls
- Collection in back wall
- Second pass: stiffening grid (75%) and caps (25%)
- Collection in back wall
- Third pass: breeder units
- Collection and exit

HCPB Blanket Concept

Association FZK-Euratom

HCLL Breeder Blanket Concept

He in/out unit manifolds

HCPB/HCLL Main Design Parameters

	HCLL	НСРВ
Heat Flux on FW	0.5 MW/m ²	0.5 MW/m ²
Neutron Wall Loading	2.4 MW/m ²	2.4 MW/m ²
He inlet/outlet temperature	300/500 °C	300/500°C
He coolant operating pressure	8 MPa	8 MPa
He flow velocity in FW/SP/CP	85/22/35 m/s	85/40/40 m/s
Maximum temperatures		
 FW (steel) 	563°C	548°C
CP (steel)	537°C	544°C
 Breeder/multiplier 	544°C (at PbLi/steel	917°C (breeder)
	interface)	655°C (Be)

Neutronic Design Analyses

- Based entirely on 3D Monte Carlo calculations (MCNP)
 - Detailed 3D torus sector models (based on PPCS, model B)
 - Blanket modules, shields, vacuum vessel, divertor, TF-coil etc.
 - Neutron source spatial distribution
 - FENDL-2 cross-section data
- MCNP calculation runs
 - MCNP4C on Linux cluster under PVM
 - Up to 20 parallel processors per run

Neutron Source Modelling in MCNP

Source density distribution

$$s(a) = \left[1 - \left(\frac{a}{A}\right)^2\right]$$

 $0 \le a \le A$, A = minor plasma radius

Plasma contour lines

$$R = R_0 + a \cdot \cos(t + \mathbf{d} \cdot \sin t) + e \cdot \left[1 - \left(\frac{a}{A}\right)^2\right]$$
$$z = E \cdot a \cdot \sin t$$
$$\mathbf{d} = \mathbf{d}_0 \cdot \frac{a}{A}, \qquad 0 \le a \le A, \qquad 0 \le t \le 2 \cdot \Pi$$

Association FZK-Euratom

MCNP Power Reactor Model (HCPB)

HCPB Blanket Concept - Breeder Pebble Beds Parallel to the First Wall -

Concept offers high flexibility for neutronics design optimisation

Radial build: number of breeder pebble beds, thickness, distances, ⁶Li-enrichment can be optimised

Major drawback:

Large amount of space consumed by radially running Helium feeding pipes running at the lateral sides of the BU towards the first wall

HCPB Blanket Concept Optimised radial build of design variant with pebble beds parallel to First Wall

Material	Be	breeder	Be	breeder	Ве	breeder	Ве	breeder	Be	breeder	Be	breeder	Be
thickness [mm]	20	11	50	11	50	12	70	15	80	3x24	80	2x38	50
Li-6 [at%]		60		60		60		60		90		90	

TBR=1.15

Note: Bed heights limited due to low heat conductivity of breeder pebble bed

TBR sufficient to cover losses & uncertainties, but:

- High Li-6 enrichment required
- Large blanket thickness required \cong 70 cm
- High Be mass inventory \cong 440 tons (PPCS-type FPR)

HCPB Blanket Concept

Variant with beds parallel to FW and meander-type cooling plates

Material	Be	breeder	Be										
thickness [mm]	20	11	50	11	50	12	70	15	80	3x24	80	2x38	50
Li-6 [at%]		60		60		60		60		90		90	
TBR		0.28		0.26		0.24		0.18		0.19		0.06	
Li-6 [at%]		40		40		40		40		60		60	
TBR		0.25		0.24		0.23		0.18		0.19		0.06	

- TBR = 1.21 (Li-6: 4x60 + 2x90 at%)
- TBR = 1.15 (Li-6 : 4x40 + 2x60 at%)

Still disadvantage of

- Large blanket thickness \cong 70 cm
- High Be mass inventory \cong 483 tons

HCPB Blanket Concept - Breeder Pebble Beds Perpendicular to First Wall -

HCPB Blanket Concept - Breeder Pebble Beds Perpendicular to First Wall -

Va	riant A	Advantage variant A : Low Be mass inventory									ory
	⁶ Li - enrichment	neutron multiplication		n TBR		Beryllium mass inventory [tons]		s L s] inv	Li ₄ SiO ₄ mass inventory [tons]		
	30	1.70	1.70		1.10		412		147		
	35	"	"		1.12		"		"		
	40	"	1.14		14		"		"		
Va	riant B	Advantage variant B: Less com						nplex co	nfigura	tion	
	Rad. length	⁶ Li-enrich	⁶ Li-enrichment [at%]		neutron		TBR		mass inventor [tons]		/
	[cm]	rear beds	main t	oeds	multi	olication	total	rear beds	Be	Li₄SiC	94
	10	30	30		1	.68	1.10				
	10	60	30	30		.68	1.11				
	10	60	40		1	.68	1.15	0.10			
	5	60	40		1	.69	1.15	0.06			
	15	60	40		1	.66	1.14	0.15	284	242	
	20	60	40		1	.64	1.12	0.22			

HCPB Blanket Concept

- Shielding Performance of Variants With Pebble Beds Perpendicular to FW-

HCLL Blanket Concept - MCNP torus sector model -

HCLL Blanket Concept

Tritium Breeding Ratio

Radial thickness of breeder zone [cm]	TBR	Neutron multiplication	Comments
75	1.22	1.58	Reference case
60	1.17	1.58	
55	1.15	1.58	

2 mm W first wall armour taken into account

- Modular HCLL blanket concept viable solution for fusion power reactor
- Optimisation mainly subject to thermal hydraulics considerations

 \Rightarrow HCLL considered as near term option in PPCS study replacing the WCLL plant model (study underway)

Supporting Neutronics Activities Effort

EU is conducting a continuous effort on fusion neutronics and nuclear data as part of the integrated fusion materials and technology programme

- Theoretical programme part
 - Evaluation and qualification of nuclear data for neutron transport and activation calculations
 - ▶ European Fusion File (EFF-3), European Activation File (EAF-2003)
 - Monte Carlo based technique for uncertainty assessments
- Experimental programme part
 - Major effort on activation experiments for validating activation cross-section data: SS-316, MANET, F82H, Eurofer, V/V-alloy, pure elements (Al, V, Ni, Cu, Cr, Fe, Hf, Nb, Y, W), CuCrZr, SiC, Li₄SiO₄
 - Current focus on neutronics TBM mock-up experiments
 ⇒ HCPB blanket mock-up in preparation at FNG; measurements in 2005
 ⇒ Follow-up experiment on HCLL mock-up staring in 2006

HCPB Breeder Blanket Mock-up Experiment

Objectives:

- Benchmark experiment to validate codes and data and check breeding performance prior to TBM testing in ITER
- Preparation of measuring techniques for TBM testing in ITER *P* Tritium production
- Development of required computational tools and data
 I uncertainty assessments

Conclusions & Outlook

- EU fusion programme well on track to develop DEMO relevant breeding blankets which can be tested in ITER.
- HCPB and HCLL Helium-cooled blankets have been elaborated.
- Key R&D issues (e. g. manufacturing technologies, Tritium control, Helium coolant flow) are being investigated.
- Mock-up test programme for TBM planned to be conducted prior to TBM installation in ITER.
- EU is conducting continuous effort on neutronics and nuclear data to support nuclear design activities.
- Neutronics mock-up experiments will be conducted for HCPB and HCLL blanket concepts to validate TBR performance.