16th ANS Topical Meeting on the Technology of Fusion Energy Sept. 14-16, 2004, Madison, Wisconsin - 1 -

O-II-5.1 Development of Solid Breeder Blanket at JAERI

<u>M. Enoeda</u>, T. Hatano, K. Tsuchiya, K. Ochiai, Y. Kawamura, K. Hayashi, T. Nishitani, M. Nishi and M. Akiba

- (1) Stepwise R&D program is being performed (Elemental Technology Development and Engineering R&D), for ITER blanket module testing.
 - Out-pile R&D
 - In-pile R&D
 - Neutronics / Tritium Production Tests with 14 MeV Neutron
 - Tritium Recovery System Development
- (2) Milestones to the fusion power demonstration plant are
 - qualification of blanket function and integrity by ITER blanket module testing, and
 - material irradiation data by International Fusion Material Irradiation Facility (IFMIF).

Time Schedule of Blanket Development in JAERI

FY	2000	2005	2010	2015	2020
Fusion Power Demonstration Plant				Design 2023-	→Decision o
ITER Project	EDA CTA/ITA	Constru	ction	Operation TBM Tests	
Blanket Development Phase Test Blanket	Elemental	Engine R&D	ering os #1 Module	Demonstration ← Testsfor Basic Option #2 Module	<u> </u>
Fabrication		7	Start Fabrication	Start Fabrication	
Blanket R&D •Out-pile R&Ds	Elemental R&Ds on Fabrication Tech.	Engineering R&Ds with large scale mock-ups	Out-pile overall Demonstration Tests	Out-pile Overall Demonstration Tests of Advanced Module	
•In-pile R&Ds	Elemental R&Ds on Irradiation Tech.	Engineering R&Ds on Irradiation Tech., Pebble Fabrication Tech	Irradiation Tests on Module #2	Irradiation Tests on Advanced Module	
•Neutronics / Tritium Productio Tests with 14MeV neutrons	n Basic Research on Blanket Neutronics	TPR evaluation with simulated blanket structure	TPR Evaluation with a full module structure	TPR Evaluation with Full Structure of Advanced Module	a
•Tritium Recovery System Development	Basic Research on Blanket Tritium Recovery Process	Elemental Prototy R&Ds Develop -ment	be Overall system Tests	Overall system Tests for Advanced Module	6 9
Structural Material R&D (RAF/M)	Optimaization	Verification	Qualification/Improv	ement diation in Fission Reac	IFMIF tors

Organization of Blanket Development in JAERI

Out-pile R&D

- Fabrication of blanket box mockup, high heat flux tests of first wall mockup, and optimization of HIP joining process was completed.
- Compound data of thermal and mechanical design database was clarified for design of breeder / multiplier pebble bed structure.

In-pile R&D

- Basic fabrication technologies of Li₂TiO₃ and Be pebbles are established. Development of advanced pebbles showed steady progress.
- Irradiation tests of the Li₂TiO₃ pebble beds have shown feasible performance in simulated pulse operation of TBM in JMTR based on developed irradiation technologies.

Netronics / Tritium Production Tests by 14 MeV Neutron Source

- Neutronics performance and Tritium Production Rate (TPR) was evaluated using 14 MeV neutrons with high accuracy, about 10% by simple mockups.

Tritium Recovery System Development

- Cryogenic Molecular Sieve Bed (CMSB) system was demonstrated.
- Protonic conductor membrane was investigated for tritium recovery from purge gas.
- PSA method with synthetic zeolite packed bed was investigated for enrichment of tritiated coolant water.

Out-pile R&D -Blanket Module Fabrication Technology-

(1) Hot Isostatic Pressing (HIP) condition was pre-selected for FW mockup fabrication.(2) HHF test of FW mockup showed the relevancy of the fabrication of structure by HIP.

Grain coarsening was suspected. Improvement of fracture toughness was needed.

→ Optimization of HIP process

By heat treatment tests, HIP and post HIP heat treatment (PHHT) conditions have been optimized. \rightarrow HIP at 1150 °C + PHHT at 930 °C + Tempering

Out-pile R&D - Thermo-mechanical Properties -

- (1) Baseline data of effective thermal conductivities of breeder and multiplier pebble beds were investigated, using hot wire method. Mechanical data was obtained under IEA collaboration.
- → Clarification of relationship between thermal and mechanical properties was needed for long term and cyclic operation of blanket modules.

Effective thermal conductivity of a compressed Li₂TiO₃ pebble bed

Increase of the effective thermal conductivity with a compressive load was confirmed in the temperature range from 400 to 700°C.

In-pile R&D - Development of Advanced Materials -

Tritium Breeder Material

- Fabrication technology of Li₂TiO₃ was established.
- Oxide-doped Li₂TiO₃ was selected as an advanced material.
- Control of grain size Chemical stability 1) Pebble Fabrication Development
 - Success in fabrication of ⁶Li-enriched (30 and 95at%) Li₂TiO₃ pebbles and TiO₂-doped Li₂TiO₃ pebbles by indirect wet process.

2) Characterization

Neutron Multiplier Material

- Fabrication technology of Be pebble was established.
- Be-Ti alloys were selected as an advanced material.
 - High melting point Low oxidation
 - 1) Pebble Fabrication Development

2) Characterization of Be-Ti Alloys (Be₁₂Ti)

Main Properties	Results	Evaluation	
Compatibility with	SS <1/10 of Be	Good	
Swelling	<1/50 of Be	Good	
Tritium inventory	Lower release temp. Smaller inventory	Good	

1) Pulse irradiation technique by changing the neutron flux with a neutron absorber window

2) Multi-paired thermocouples for measuring temperatures

3) Highly sensitive and responsive self-powered neutron detector (SPND)

Success in demonstration of tritium production and thermal performance in-pile test in JMTR, and clarification of tritium release characteristics.

2) Tritium Recovery under Neutron Pulse Operation (ITER pulse operation)

Neutronics Experiments of DEMO Blanket (P-I-23)⁻¹⁰⁻

Integral experiments have been performed using the partial mockup to verify the tritium productions by FNS.

Neutronics Experiments of DEMO Blanket

Comparison of experimental data and numerical analyses using Monte Carlo code MCNP-4C and Japanese Evaluated Nuclear Data Library JENDL-3.2.

Distance from boundary between F82H and Li₂TiO₃ regions (mm)

C/Es of the local TPRs are 0.96 - 1.08 (av. 1.02) and 0.99 - 1.18 (av. 1.11) for the experiments without and with the neutron reflector, respectively.

- 11 -

Tritium Recovery System Development (Breeder Purge Gas)

12 -

Tritium Recovery System Development (Blanket Coolant Water)

Principle of HTO separation by PSA method was demonstrated.

13 -

- (1) Organized long term blanket R&D is being performed, based on the program established by the Fusion Council of Japan.
- (2) Essential elemental technologies of solid breeder blanket have been well investigated. Necessary data, technologies and experiences have been accumulated. Now, the development is stepping up to the Engineering R&D phase.
- (3) In the Engineering R&D phase, real scale mockups will be fabricated and tested for the demonstration of the feasibility and the clarification of the manufacturing specifications of the ITER test blanket modules.

Related poster:

P-I-23 Neutronics experiments using small partial mockup of the ITER test blanket module with solid breeder, by Sato et al.