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Major Steps of Blanket Development in Japan

(1) Stepwise R&D program is being performed (Elemental Technology
Development and Engineering R&D), for ITER blanket module testing.
- Out-pile R&D
- In-pile R&D
- Neutronics / Tritium Production Tests with 14 MeV Neutron
- Tritium Recovery System Development

(2) Milestones to the fusion power demonstration plant are
- qualification of blanket function and integrity by ITER blanket module
testing, and
- material irradiation data by International Fusion Material Irradiation Facility
(IFMIF).



Time Schedule of Blanket Development in JAERI

AEngineerin R&Ds on

FY 2000 2005 2010 2015 2020
Fusion Power :
Demonstration Design
Plant 2023->Decision of

consqruction
ITER EDA CTA/ITA Construction Operation
Project A TBM Tests
FAN
Blanket . . Demornistration
Development Elemental €— . Engineering Testsfor Bapic ——
Phase Technology R&Ds T Option
Test Blanket ot Fabrioati #2 Module
Fabrication art Fabrication tart Fabrication
"""" BlanketR&D| - | | Lo oueran
. Elemental R&Ds on  Engineering R&Ds with | Out-pile overall : :
*Out-pile R&Ds |Fabrication Tech. large scale mock-ups Dermonstration Tests Demonstration Tests
‘ of Advanced Module |

*In-pile R&Ds Elemental R&Ds on Irradiation Tech. Irradiation Tests on Irradiation Tests on
Irradiation Tech. ?ebrtl)le Fabrication Module #2 Advanced Module
Neutronics /| | eeh- ——— j——
Tritium Production Basic Researchon | TPR evaluation with | TPR Evaluation with | TPR Evaluation with a
Tests with 14MeV p|gnket Neutronics simulated blanket a full module Full Structure of
neutrons | structure structure : Advanced Module
-STrittium Recovery gfs'i szgrs.et.arch ON  IElemental Prototype Ov?rall Overall system Tests
ystem anket Tritium R&Ds Dl system
Development Recovery Process _ment . Tests for Advanced Modulel
Structural Il;MlF
Material R&D|  Optimaization Verification Qualification/Improviement

(RAF/M)

Irradiation in Fission Reactors




1
I
1

Organization of Blanket Development in JAERI
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Cooperation and Collaboration
Universities (Basic Research), Industries (Fabrication Technology, System Engineering)
International Collaboration (IAEA, IEA, Bilateral )




Achievements of Elemental Technology Development

Out-pile R&D

- Fabrication of blanket box mockup, high heat flux tests of first wall mockup, and
optimization of HIP joining process was completed.

- Compound data of thermal and mechanical design database was clarified for
design of breeder / multiplier pebble bed structure.

In-pile R&D

- Basic fabrication technologies of Li, TiO; and Be pebbles are established.
Development of advanced pebbles showed steady progress.

- Irradiation tests of the Li, TiO; pebble beds have shown feasible performance in
simulated pulse operation of TBM in JMTR based on developed irradiation
technologies.

Netronics / Tritium Production Tests by 14 MeV Neutron Source

- Neutronics performance and Tritium Production Rate (TPR) was evaluated using
14 MeV neutrons with high accuracy, about 10% by simple mockups.

Tritium Recovery System Development

- Cryogenic Molecular Sieve Bed (CMSB) system was demonstrated.

- Protonic conductor membrane was investigated for tritium recovery from purge gas.

- PSA method with synthetic zeolite packed bed was investigated for enrichment of
tritiated coolant water.



Out-pile R&D -Blanket Module Fabrication Technology-

(1) Hot Isostatic Pressing (HIP) condition was pre-selected for FW mockup fabrication.
(2) HHF test of FW mockup showed the relevancy of the fabrication of structure by HIP.
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By heat treatment tests, HIP and post HIP heat treatment (PHHT) conditions
have been optimized. - HIP at 1150 °C + PHHT at 930 °C + Tempering




Out-pile R&D - Thermo-mechanical Properties -

(1) Baseline data of effective thermal conductivities of breeder and multiplier pebble beds were
investigated, using hot wire method. Mechanical data was obtained under IEA collaboration.
—> Clarification of relationship between thermal and mechanical properties was needed for long
term and cyclic operation of blanket modules.
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Increase of the effective thermal conductivity with a compressive load was

confirmed in the temperature range from 400 to 700°C.




In-pile R&D - Development of Advanced Materials -

Tritium Breeder Material Neutron Multiplier Material

- Fabrication technology of Li,TiO, . Fabr@cation technology of Be pebble was
was established. established.
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Development of Irradiation Technology for In-pile Functional Tests

1) Pulse irradiation technique by changing the neutron flux with a neutron
absorber window

2) Multi-paired thermocouples for measuring temperatures

3) Highly sensitive and responsive self-powered neutron detector (SPND)

~~

Success in demonstration of tritium production and thermal performance
in-pile test in JMTR, and clarification of tritium release characteristics.

2) Tritium Recovery under Neutron Pulse Operation
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Neutronics Experiments of DEMO Blanket (P-1-23)

Integral experiments have been performed using the partial
mockup to verify the tritium productions by FNS.
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Neutronics Experiments of DEMO Blanket
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Comparison of experimental data and numerical analyses using Monte Carlo
code MCNP-4C and Japanese Evaluated Nuclear Data Library JENDL-3.2.
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C/Es of the local TPRs are 0.96 — 1.08 (av. 1.02) and 0.99 — 1.18 (av. 1.11)
for the experiments without and with the neutron reflector, respectively.




Cryogenic Molecular Sieve Bed

CMSB applicable
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System integration of simulated fuel processing and
CMSB system was demonstrated.
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Applicable range of CECE
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Principle of HTO separation by PSA method was demonstrated.
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Conclusions

(1) Organized long term blanket R&D is being performed, based on
the program established by the Fusion Council of Japan.

(2) Essential elemental technologies of solid breeder blanket have
been well investigated. Necessary data, technologies and
experiences have been accumulated. Now, the development is
stepping up to the Engineering R&D phase.

(3) In the Engineering R&D phase, real scale mockups will be
fabricated and tested for the demonstration of the feasibility and
the clarification of the manufacturing specifications of the ITER
test blanket modules.

Related poster:
P-1-23 Neutronics experiments using small partial mockup of the ITER test
blanket module with solid breeder, by Sato et al.
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