

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

AN INTEGRATED APPROACH TO FUSION MATERIAL RESEARCH AT SCK•CEN

E. Lucon, R.-W. Bosch, L. Malerba, S. Van Dyck and M. Decréton

SCK•CEN, Mol (Belgium)

TOFE 16 – Madison, WI (USA)

September 14-16, 2004

OUTLINE

>Introduction (short)

- Irradiation and mechanical characterization of EUROFER97
 - Tensile properties
 - Impact properties
 - Fracture toughness properties
- Environmentally assisted cracking in water and Pb-Li
- Multiscale modelling of radiation effects
 Specific effects on Fe-Cr systems

INTRODUCTION

Structural materials for fusion

- superior mechanical and chemical behavior → safe operation of the reactor
- low activation characteristics → minimization of environmental impact of produced waste

RAFM steels investigated in EU, Japan and US

• EU reference steel: EUROFER97 (DEMO design)

Integrated approach at SCK•CEN, combining:

- irradiation (base, ODS and joints)
- characterization mechanical properties (PIE)
- study of corrosion behaviour (EAC)
- modelling of radiation damage at the atomic scale

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

OUTLINE

>Introduction (short)

Irradiation and mechanical characterization of EUROFER97

- Tensile properties
- Impact properties
- Fracture toughness properties
- Environmentally assisted cracking in water and Pb-Li
- >Multiscale modelling of radiation effects

EU reference RAFM steel: EUROFER97

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

- Produced by Böhler (Germany)
- >Heat treatment:
 - normalisation 980 °C
 - •tempering 740 °C/3.7 h + air cooling
- >Product form: bars with D = 100 mm

Neutron Irradiations

> Test reactor: BR2 (Belgian Reactor 2) in Mol

> Three irradiation campaigns:

- IRFUMA-I (2000); 0.3 dpa
- IRFUMA-II (2001-2002); 1 dpa
- IRFUMA-III (2002-2003); 1.7 dpa
- > Irradiation conditions:
 - T = 300 °C
 - Flowing water
 - Extensive dosimetry

Subsequent PIE (tensile, impact, toughness, EAC) + characterization unirradiated state

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Tensile properties

Hardening (yield and UTS increase) and loss of ductility (decrease of elongation)

CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Impact properties (I)

Material embrittlement (DBTT shift and moderate loss) of USE) 300 250 Dial energy KV (J) 200 DBTT remains well below RT 150 Unirradiated 100 ♦ 0.34 +/- 0.07 dpa ▲ 0.71 +/- 0.16 dpa 50 • 1.55 +/- 0.31 dpa 0 -150 -100 -50 0 50 100 150 200 250 300 **Temperature (°C)**

ÉTUDE DE L'ÉNERGIE NUCLÉAIR

Impact properties (II)

Comparison with other RAFM steels, all irradiated at 300 °C

Fracture toughness properties (I)

- ENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE
 - Material embrittlement (increase of reference temperature with accumulated dose)

RE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIR

Charpy VS Fracture Toughness: safety implications?

T_o shifts are consistently and significantly larger than DBTT shifts: observed on F/M steels, but not on RPVS

ENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Future irradiations & PIE

> IRFUMA-IV campaign

- Materials: E97 welded joints, E97 ODS
- Irradiation conditions: T = 300 °C, target dose ~ 1.7 dpa
- Irradiation planned July 2004-November 2005
- PIE planned first half of 2006
- Specimens irradiated:
 - ✓ Sub-size tensile
 - Sub-size Charpy (KLST)
 - Precracked sub-size Charpy (PKLST)
 - ✓ Slow Strain Rate Testing (SSRT)

OUTLINE

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

>Introduction (short)

- Irradiation and mechanical characterization of EUROFER97
 - Tensile properties
 - Impact properties
 - Fracture toughness properties

Environmentally assisted cracking in water and Pb-Li

ale modelling of radiation effects ic effects on Fe-Cr systems

RE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Environmentally Assisted Cracking in Water and Pb-Li

- Investigation of E97 compatibility with possible fusion reactor environments:
 - water at high temperature
 - liquid Pb-Li eutectic alloys

Studies have shown that SCC is enhanced by:

- chloride addition
- electrochemical potential increase (pitting)
- increase in hardness and strength
- Hydrogen embrittlement

D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Influence of irradiation on the corrosion behaviour of E97

> Occurrence of EAC depends on:

- environment → increase in potential and corrosion rate
- material properties → hardening and microchemical modifications induced by irradiation (IASCC)

It's expected that irradiation hardening will enhance the material's susceptibility to LME (Liquid Metal Embrittlement)

D'ÉTUDE DE L'ÉNERGIE NUCLÉAIR

Experimental investigation of IASCC in water

SSRT samples irradiated at 300 °C in BR2

Test conditions:

- T = 100 and 300 °C
- Environments: air, oxygenated water, hydrogenated water
- Post-test SEM examinations (fracture mode)

Main results:

- Clear hardening effect
- No large influence of environment (tendency for flow localization slightly higher in water)
- Fracture surfaces: general ductile failure, no SCC (wellcontrolled water chemistry)

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

SEM observations of fracture surfaces

> 45° grooves observed (plastic flow localization) > Evolving to "fish-scale" network for higher doses

D'ÉTUDE DE L'ÉNERGIE NUCLÉAII

Future activities: irradiation effects on LME

- SSRT tests planned on samples submerged in liquid Pb-Li
- Critical parameters to be investigated:
 - temperature (between melting point Pb-Li and T_{irr})
 - strain rate (from 10⁻² s⁻¹ to 10⁻⁵ s⁻¹)
 - pre-wetting time (time of exposure to PbLi before straining specimen)
- Materials considered:
 - EUROFER97 base (irradiated in IRFUMA-III, 2002-2003)
 - EUROFER97 ODS (irradiated in IRFUMA-IV, 2004-2005)

OUTLINE

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Introduction (short) Irradiation and mechanical characterization of EUROFER97

- Tensile properties
- Impact properties
- Fracture toughness properties

Environmentally assisted cracking in water and Pb-Li

Multiscal e modelling of radiation effects

Specific effects on Fe-Cr systems

ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Multiscale Modelling Atomistic Simulations

- Computer simulation (multiscale modelling) tools are being used all over the world to help understand the behaviour of materials under irradiation from a fundamental point of view (atomic-level)
- At SCK•CEN, two studies are being performed:
 - Molecular dynamics simulation of displacement cascades in Fe-Cr alloys
 - Interstitial motion in Fe-Cr alloys

Cascades in Fe and Fe-Cr (I) Main results

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Cascades in Fe and Fe-Cr (II) Main results

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

D'ÉTUDE DE L'ÉNERGIE NUCLÉAIR

Cascades in Fe and Fe-Cr Some conclusions

- Main effects of the presence of Cr on primary damage state are that:
 - most interstitial atoms are Cr atoms
 - interstitial clusters contain a fraction of Cr atoms larger than the alloy concentration
- Mixed interstitial clusters are expected to have different mobility from self-interstitial clusters, as supported by experimental observation (K. Arakawa et al. J. Nucl. Mater. 229-233 (2004) ...)
- ⇒ The focus should be moved to the study of the mobility of interstitials and interstitial loops in concentrated (3-12%) Fe-Cr alloys

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Mobility of interstitials in Fe-Cr Cr concentration effect (preliminary)

F. Garner et al. JNM 276 (2000) 123

Low concentration: pure trapping effect, at low T self-interstitial atoms (SIA) are trapped at Cr atoms and diffusivity is reduced; effect disappears at high T

High concentration: "jumping from Cr to Cr" the SIA reduces the binding energy to Cr atoms to an effective value, lower than for low concentration: only slight reduction of diffusivity

Most effective diffusivity reduction for 7% Cr (with this potential ...)