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INTRODUCTION

Structural materials for fusion
• superior mechanical and chemical behavior → safe 

operation of the reactor

• low activation characteristics → minimization of 
environmental impact of produced waste

RAFM steels investigated in EU, Japan and US
• EU reference steel: EUROFER97 (DEMO design)

Integrated approach at SCK•CEN, combining:
• irradiation (base, ODS and joints)

• characterization mechanical properties (PIE)

• study of corrosion behaviour (EAC)

• modelling of radiation damage at the atomic scale
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EU reference RAFM steel:
EUROFER97

C Si Mn P S Cr Mo Ni V W Cu Co 
0.12 0.07 0.44 <0.005 0.004 8.99 <0.001 0.007 0.19 1.10 0.022 0.004 
Ti Al Nb B N Pb Ta O As Sn Zr Sb 

0.009 0.008 <0.001 <0.001 0.017 <0.0003 0.14 0.0013 <0.005 <0.005 <0.005 <0.005 

Produced by Böhler (Germany)

Heat treatment:

•normalisation 980 °C

•tempering 740 °C/3.7 h + air cooling

Product form: bars with D = 100 mm

(weight %)



Neutron Irradiations

Test reactor: BR2 (Belgian Reactor 2) in Mol

Three irradiation campaigns:
• IRFUMA-I (2000); 0.3 dpa

• IRFUMA-II (2001-2002); 1 dpa

• IRFUMA-III (2002-2003); 1.7 dpa

Irradiation conditions:
• T = 300 °C

• Flowing water

• Extensive dosimetry

Subsequent PIE (tensile, impact, toughness, 
EAC) + characterization unirradiated state



Tensile properties

Hardening (yield and UTS increase) and loss of 
ductility (decrease of elongation)
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Impact properties (I)
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Impact properties (II)
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Fracture toughness properties (I)
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Charpy VS Fracture Toughness:
safety implications?
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Future irradiations & PIE

IRFUMA-IV campaign
• Materials: E97 welded joints, E97 ODS

• Irradiation conditions: T = 300 °C, target dose ~ 1.7 dpa

• Irradiation planned July 2004-November 2005

• PIE planned first half of 2006

• Specimens irradiated:

Sub-size tensile

Sub-size Charpy (KLST)

Precracked sub-size Charpy (PKLST)

Slow Strain Rate Testing (SSRT)
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Environmentally Assisted 
Cracking in Water and Pb-Li

Investigation of E97 compatibility with 
possible fusion reactor environments:
• water at high temperature

• liquid Pb-Li eutectic alloys

Studies have shown that SCC is enhanced by:
• chloride addition

• electrochemical potential increase (pitting)

• increase in hardness and strength

• Hydrogen embrittlement



Influence of irradiation on the 
corrosion behaviour of E97

Occurrence of EAC depends on:

• environment → increase in potential and 
corrosion rate

• material properties → hardening and 
microchemical modifications induced by 
irradiation (IASCC)

It’s expected that irradiation hardening will 
enhance the material’s susceptibility to LME 
(Liquid Metal Embrittlement)



Experimental investigation of 
IASCC in water

SSRT samples irradiated at 300 °C in BR2

Test conditions:
• T = 100 and 300 °C

• Environments: air, oxygenated water, hydrogenated water

Post-test SEM examinations (fracture mode)

Main results:
• Clear hardening effect

• No large influence of environment (tendency for flow 
localization slightly higher in water)

• Fracture surfaces: general ductile failure, no SCC (well-
controlled water chemistry)



SEM observations
of fracture surfaces

45° grooves observed (plastic flow localization)

Evolving to “fish-scale” network for higher doses



Future activities:
irradiation effects on LME

SSRT tests planned on samples submerged in 
liquid Pb-Li

Critical parameters to be investigated:
• temperature (between melting point Pb-Li and Tirr)

• strain rate (from 10-2 s-1 to 10-5 s-1)

• pre-wetting time (time of exposure to PbLi before straining 
specimen)

Materials considered:
• EUROFER97 base (irradiated in IRFUMA-III, 2002-2003)

• EUROFER97 ODS (irradiated in IRFUMA-IV, 2004-2005)
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Multiscale Modelling
Atomistic Simulations

Computer simulation (multiscale modelling) 
tools are being used all over the world to help 
understand the behaviour of materials under 
irradiation from a fundamental point of view 
(atomic-level)

At SCK•CEN, two studies are being performed:

• Molecular dynamics simulation of displacement cascades 
in Fe-Cr alloys

• Interstitial motion in Fe-Cr alloys



Cascades in Fe and Fe-Cr (I) 
Main results
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Cascades in Fe and Fe-Cr (II)
Main results
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concentration of Cr than the alloy, growing 
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Cascades in Fe and Fe-Cr
Some conclusions

Main effects of the presence of Cr on primary damage state 
are that:

• most interstitial atoms are Cr atoms

• interstitial clusters contain a fraction of Cr atoms larger than the 
alloy concentration

Mixed interstitial clusters are expected to have different 
mobility from self-interstitial clusters, as supported by 
experimental observation (K. Arakawa et al. J. Nucl. Mater. 

229-233 (2004) …)

⇒ The focus should be moved to the study of the 
mobility of interstitials and interstitial loops in 
concentrated (3-12%) Fe-Cr alloys



Mobility of interstitials in Fe-Cr
Cr concentration effect (preliminary)
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