16th TOFE Meeting Madison, Sept.14-16,2004

Recent Technological Progress for Advanced Tokamak Research in JT-60U and JFT-2M

N. Hosogane, the JT-60 Team and JFT-2M Group

Japan Atomic Energy Research Institute

Outline of the talk

1. Introduction

2. Progress of JT-60U Facilities toward long pulse operation

- 1) 65 s tokamak discharges
- 2) Modification of the N-NBI ion source
- 3) Anode voltage control for the EC system
- 4) Carbon grill antenna for the LH system
- 3. Extension of advanced tokamak operation in JT-60U
- 4. Feasibility tests of ferritic steel with tokamak plasmas in JFT-2M
- 5. Summary

Toward a future reactor with economical and environmental attractiveness.

New objective regime of JT-60U

Steady state advanced tokamak research with discharges and heating much longer than current diffusion time.

Advanced Material Tokamak Experiment (AMTEX) in JFT-2M

Compatibility tests of ferritic steel walls with high performance

Modification of JT-60U to a long pulse device

Tokamak discharge and heating durations were extended mainly by modifying the control systems within capacities of the systems.

JAERI 🗉

Technological progress with components and operation was made for N-NBI, EC and LH.

Facilities		Duration	Modification / Improvement		
			Control system	Components	Operation
Coil P/S		- 15 s → 65 s	У	-	-
Gas			У	-	-
NBI	Positive	10 s → 30 s	У	Port limiters, P/S	-
	Negative		У	lon source	-
RF	EC	5,10 s → 60 s	У	Cooling of window	Anode voltage control
	LH		у	Carbon antenna	-

4 T, 15 s \rightarrow 2.7 T, 65 s

Modification of the ion source for heat load reduction

.IAFRI 🗉

Cause for heat load to the GRG : Stripping loss

Measures : 1) Masking of the side grids of the extractor. 2) Making gas vents at the side grids of the accelerators and GRG.

Heat load reduction and prospect to 30 s N-NB injection

Result : 1) Two causes; Stripping loss and direct interception of D⁻

2) Reduction in stripping loss by 43% at 0.3 Pa

Operation and prospect :

- 1) Saturation of water temperature during 1.6 MW injection for 17 s.
- 2) 30 s injection is possible from the heat balance.

JT-60U EC system and objective operation

Gyrotron (Design) : 100 GHz, 1 MW/unit x 4, Oscillation duration

JAFRI

Improvement for long pulse operation

Problem: Decay of the beam current due to cathode cooling.

Operational improvement :

Anode voltage control (New) \rightarrow possible only with JT-60U gyrotron.

JAERI **=**

Result: Oscillation continued for 16 s by ΔV_{anode} =400 V. Limited to T<16 s by temperature rise at the mode converter.

Prospect: 0.6 MW injection for 30 s \rightarrow **ok**

Development of a carbon LH grill antenna

JAERI i

Necessity: Heat resistant antenna to avoid damage by plasmas and RF discharge

Key techniques: 1) Carbon grill mouth, 2) Bolt joint,

3) Copper sheet with emboss processing

Results and prospect: 1) LH injection ~ 1 MW, 7 s , ~5 MJ (duty 70%) 2) Similar level of current drive efficiency 3) Copper impurities are decreasing.

Extension to steady state high β_N plasma operations

The duration of advanced tokamaks with $\beta_N \sim 2$ have been extended to 15-24 s mainly by P-NBI heating.

Plasma current profile control by the modified N-NBI and/or RF will be used to further sustain β_N plasmas in steady state.

Feasibility tests of ferritic steel to a tokamak in JFT-2M

JAERI 🗖

Condition: 1) First wall fully covered with ferritic steels.
2) Ripple field rate : 2.2%→0.4%
3) No large low-n mode error field triggering locked mode.

Results: 1) H-mode characteristics similar to the previous ones. 2) No serious influence on generation of high β_N plasma

Prospect: Favorable for usage of ferritic steel in future reactors.

Summary

.JAFRI 🖬

- 1) For steady state advanced tokamak research, JT-60U has been modified to a device with a potential of long pulse tokamak operation up to 65 s and heating operation up to 30 s.
- 2) For this purpose, technological progress has been made with the N-NBI, EC and LH systems; Ion source of the N-NBI Anode voltage control method Heat resistive carbon grill LH antenna.
- 3) Compatibility of ferritic steel walls with high performance tokamak plasmas has been confirmed in JFT-2M, which encourages the use of this steels in future tokamak reactors.