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Outline of presentation

• Simulation of threat spectra.
• Focus on expanding ionic debris.
• Shock wave intensity along decreasing density 

gradient.
• What is wrong with the hydrodynamic picture?
• Summary



Threat spectra computed with conventional 
radiation hydrodynamics codes.

Neutron transport and x-ray 
emission are relatively high-
confidence calculations. 
Nuclear cross sections and 
atomic opacities are “known”.

Emitting plasma is hot and 
relatively stationary during 
emission. 

Total energy in ionic debris is 
high-confidence because 
Eion= Etotal - Eneutron - Exray.

Direct drive laser target – No high Z
Ref: Perkins, HAPL website

Not to 
scale

Yield fraction:
Neutrons            73%
X-rays                  1%
Ionic debris        26%



Ionic debris spectrum – what remains 
after neutrons and x-rays leave.

Implosion (10’s ns)
TN burn (10’s ps)
emission (1’s ns)
expansion (1,000’s ns)

few milligrams in few cm3

few milligrams in many m3.

Expansion cooling: T2 / T1 = (v1 / v2)γ-1

T1 = 50 keV T2 = 37 K! Condensation?

Is there a mechanism that can produce a higher 
temperature (energy density) than the initial state?



Shock wave propagation down density 
gradient produces infinite temperature
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Hydro simulation of shock propagation 
down power law density gradient



Shock propagation down density gradient of 
HAPL target with bang time as initial condition
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What is wrong with this picture?

Ion mean free path >> shock width as ρ 0. 

Hydrodynamic 

Kinetic 

Transitional 



UW is Simulating Target Explosions Using the 
Icarus Direct Simulation Monte Carlo (DSMC) Code
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• Code written by Dr. Tim Bartel, SNL.

0 0.2 0.4 0.6 0.8 1
Z�mm�0

0.2

0.4

0.6

0.8

1

R
m

m

Icarus mesh for the 
HAPL problem.



BUCKY radiation hydrodynamics code will be modified 
to accelerate only the “appropriate” plasma ions
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Conclusions

• Arbitrarily large temperatures can be 
generated at the outer boundary of the 
target by shock breakout into vacuum.

• Ion kinetic effects must be included in 
target expansion simulation to accurately 
predict shock propagation down density 
gradient and resultant temperature.
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