

Benefits of Radial Build Minimization and Requirements Imposed on ARIES Compact Stellarator Design

Laila El-Guebaly (UW), R. Raffray (UCSD), S. Malang (Germany), J. Lyon (ORNL), L.P. Ku (PPPL) and the ARIES Team

> 16th TOFE Meeting September 14 - 16, 2004 Madison, WI

Objectives

- Define radial builds for proposed blanket concepts.
- Propose innovative shielding approach that minimizes radial standoff.
- Assess implications of new approach on:
 - Radial build
 - Tritium breeding
 - Machine size
 - Complexity
 - Safety
 - Economics.

Background

- Minimum radial standoff controls COE, unique feature for stellarators.
- Compact radial build means smaller R and lower B_{max} \Rightarrow smaller machine and lower cost.
- All components provide shielding function:
 - Blanket protects shield
 - Blanket & shield protect VV
 - Blanket, shield & VV protect magnets

- Blanket offers less shielding performance than shield.
- Could design tolerate shield-only at Δ_{\min} (no blanket)?
- What would be the impact on T breeding, overall size, and economics?

New Approach for Blanket & Shield Arrangement

ARIES-CS Plasma and Coils

Shield-only Zone Covers ~8% of FW Area

Breeding Blanket Concepts

Breeder Multiplier Structure FW/Blanket Shield VV Coolant Coolant Coolant **ARIES-CS**: **Internal VV:** Flibe FS H_2O Be Flibe Flibe LiPb SiC LiPb LiPb H_2O LiPb* FS He/LiPb He H_2O Li₄SiO₄ H_2O FS He He Be **External VV:** LiPb* He or H_2O FS He/LiPb He Li FS He/Li He He **SPPS: External VV:**

* With or without SiC inserts.

Li

V

Li

Li

He

Radial Builds have been Defined Using Same Design Criteria

Peak n Wall Loading	3*	MW/m^2
Overall TBR (for T self-sufficiency)	1.1	
Damage Structure (for structural integrity)	200 3%	dpa - advanced FS burn up - SiC
Helium Production @ VV (for reweldability of FS)	1	appm
HT S/C Magnet (@ 15 K): Fast n fluence to $Nb_3Sn (E_n > 0.1 MeV)$ Nuclear heating Dose to polyimide insulator dpa to Cu stabilizer	$10^{19} \\ 5 \\ 10^{11} \\ 6 x 10^{-3}$	n/cm ² mW/cm ³ rads dpa
Machine Lifetime	40	FPY
Availability	85%	

* 4.5 MW/m² for solid breeder concept.

Breeding Performance

Thick blanket; no structure; no multiplier

Actual Design

- Local TBR approaches 1.25.
- Blankets sized to provide 1.1 overall TBR based on 1-D analysis combined with blanket coverage fraction.
- 3-D analysis should confirm key parameters.

Representative Radial Build (LiPb/FS/He System; Internal VV)

Nominal Radial Standoff Varies Widely with Blanket Concept

			Δ (m)	
Internal VV:	Blanket/Shield	/VV/Gaps	Plasma – M i	id Coil
Flibe/FS/Be	1.07	(min)	1.32	(min)
LiPb/SiC	1.15		1.40	
LiPb/FS/He	1.24		1.49	
Li ₄ SiO ₄ /Be/FS/He	1.30	(max)	1.55	(max)
External VV:	Blanket/Shie	ld/Gaps		
LiPb/FS/He/H ₂ O	1.22		1.47	
LiPb/FS/He	1.60		1.85	
Li/FS/He	1.79	(max)	2.04	(max)
S*:				
External VV:				
Li/V	1.20		1.96	

Δ_{\min} Varies within 20 cm with blanket Concept

		$\Delta_{\min}(\mathbf{m})$
ARIES-CS:		
<u>Internal VV</u> :	WC-Shield/VV	<u>Plasma – Mid Coll</u>
Flibe/FS/Be	0.86 (min)	1.11 (min)
LiPb/SiC	0.89	1.14
LiPb/FS/He	0.93	1.18
Li ₄ SiO ₄ /Be/FS/He	1.04 (max)	1.29 (max)
External VV•	WC-Shield	
LiPb/FS/He/H ₂ O	0.95	1.20
LiPb/FS/He	0.93	1.18
Li/FS/He	0.91	1.16
SPPS: External VV:		
L1/ V	_	_

Comparison Between Radial Builds

- Flibe system offers most compact radial build, but Be raises safety and economic concerns.
- **He coolant** occupies 10-30 cm of radial standoff.
- Water is effective shielding material for VV
 - \Rightarrow avoid breeders incompatible with water (such as Li).

New Shielding Approach Introduces Design Issues

• Benefits:

- Compact radial standoff
- Small R and low B_{max}
- Low COE.

• Challenges (to be addressed in Phase II of study):

- Integration of shield-only zones with surrounding blanket.
- Incorporation of decay heat removal loop for WC-shield.
- Handling of massive WC-shield during maintenance.

Key Parameters for System Analysis

Flibe/FS/Be LiPb/SiC LiPb/FS SB/FS/Be Li/FS 1.18 1.11 1.14 1.29 1.16 Δ_{\min} **Overall TBR** 1.1 1.1 1.1 1.1 1.1 **Energy Multiplication** (M_n) **1.2** 1.1 1.15 1.3 1.13 Thermal Efficiency (η_{th}) ~45% 55-60% ~45% ~45% ~45% **FW Lifetime (FPY)** 6.5 6 5 4.4 7 System Availability ~85% ~85% ~85% ~85% ~85%

Integrated system analysis will assess impact of $\Delta_{\!_{min}}, M_n,$ and η_{th} on COE

Well Optimized Radial Build Contributed to Compactness of ARIES-CS

Major radius more than halved by advanced physics and technology, dropping from 24 m for UWTOR-M to 7-8 m for ARIES-CS and approaching R of advanced tokamaks.

Conclusions

- Innovative shielding approach has been developed for ARIES-CS.
- Combination of shield-only zones and non-uniform blanket represents best option for ARIES-CS.
- Solutions for challenges facing proposed shielding approach will be developed in Phase-II of study.
- Means of dimension control along with advances in physics and technology helped ARIES-CS achieve the compactness that other stellarators had not been able to achieve before.
- Positive trends in physics and engineering position compact stellarators for bright future.

Companion Presentations

Poster on Wednesday @ 1:30 - 3:30 PM: **Initial Activation Assessment for ARIES Compact Stellarator Power Plant** L. El-Guebaly, P. Wilson, D. Paige and the ARIES Team **Oral on Tuesday @ 10:30 - 12 AM: Evolution of Clearance Standards and Implications for Radwaste Management of Fusion Power Plants** L. El-Guebaly, P. Wilson, D. Paige and the ARIES Team

Magnet Design

Plasma/Blanket/Shield/VV

ARIES-CS Plasma and Coils

3 FP Configuration R = 8.25 m a = 1.85 m 2 FP Configuration R = 7.5 m a = 2 m

ŵ

LiPb/FS/He Composition

Component	Composition
FW	31% FS Structure 69% He Coolant
Blanket [#]	90% LiPb with 90% enriched Li 3% FS Structure 7% He Coolant
Back Wall	80% FS Structure 20% He Coolant
WC Shield*	90% WC Filler 3% FS Structure 7% He Coolant
FS Shield	15% FS Structure 10% He Coolant 75% Borated Steel Filler
VV	28% FS Structure 49% Water 23% Borated Steel Filler

Without SiC inserts.

* FS and He contents will be adjusted later.