Optimization of Stellarator Reactor Parameters

J. F. Lyon, Oak Ridge National Lab. for the ARIES Team

TOFE Meeting September 15, 2004

Rationale for Compact Stellarator Reactor Study

- German HSR with *R*/*a* = 10.5 has *R* = 18-22 m
- ARIES SPPS (~1994) reduced reactor size and cost
 - R = 14 m due to R/a = 8 and larger plasma-coil spacing
 - estimated CoE same as ARIES-IV tokamak reactor
 - configuration was *not* optimized, less developed physics
- LHD-based reactors also have R ~ 14 m
- New optimized compact stellarators have *R*/*a* = 2.7-4.5
 ⇒ this should lead to smaller *R* and lower CoE

Parameter Determination Integrates Plasma/Coil Geometry and Reactor Constraints

Plasma & Coil Geometry

- Shape of last closed flux surface and <R_{axis}>/<a_{plasma}>, β limit?
- Shape of modular coils and $B_{\text{max,coil}}/B_{\text{axis}}$ vs coil cross section, $<\!R_{\text{coil}}\!>\!\!/<\!R_{\text{axis}}\!>, \Delta_{\text{min}}/<\!R_{\text{axis}}\!>$
- Alpha-particle loss fraction

Reactor Constraints

- Blanket and shield thickness
- $B_{\text{max,coil}}$ vs j_{coil} for superconductor
- Acceptable wall power loading
- Access for assembly/disassembly
- * Component costs/volume

Staged Approach in Defining Parameters

- 0-D scoping study determines device parameters
 - calculates $\langle R_{axis} \rangle$, $\langle B_{axis} \rangle$, $\langle \beta \rangle$, $\langle p_{n,wall} \rangle$, B_{max} , j_{coil} , etc. subject to limits and constraints
- 1-D power balance determines plasma parameters and path to ignition
 - incorporates density and temperature profiles; overall power balance; radiation, conduction, alpha-particle losses
- 1-D systems cost optimization code
 - calculates self-consistent temperature profiles
 - calculates reactor component and operating costs
- Examine sensitivity to models, assumptions & constraints at each stage

Four Configurations Have Been Studied

NCSX

port or sector (end) access

access through ports

MHH2

both quasi-axisymmetric

Key Configuration Properties	NCSX-1	NCSX-2	MHH2-8	MHH2-16
Plasma aspect ratio A _p = < <i>R</i> >/< <i>a</i> >	4.50	4.50	2.70	3.75
Wall (plasma) surface area/< <i>R</i> > ²	11.80	11.95	19.01	13.37
Min. plasma-coil separation ratio $\langle R \rangle / \Delta_{min}$	5.90	6.88	4.91	5.52
Min. coil-coil separation ratio < <i>R</i> >/(c-c) _{min}	10.07	9.38	7.63	13.27
Total coil length/ <r></r>	89.7	88.3	44.1	64.6
B _{max,coil} /< B _{axis} > for 0.4-m x 0.4-m coil pack	2.10	1.84	3.88	2.77

0-D Determination of Main Reactor Parameters

- Fix maximum neutron wall loading p_{n,wall} at 5 MW/m²
 peaking factor =1.5 -> <p_{n.wall}> = 3.3 MW/m²
- Maximize $\langle p_{wall} \rangle$ subject to $j_{SC}(B_{max})$ and radial build constraints
 - blanket, shield, structure, vacuum vessel ~ wall area ~ $1/\langle p_{n,wall} \rangle$
 - volume of coils ~ L_{coil}/j_{coil} ~ <*R*>^{1.2} ~ 1/< $p_{n,wall}$ >^{0.6}
 - blanket replacement independent of $< p_{n,wall} >$
- $\langle p_{wall} \rangle = 3.3 \text{ MW/m}^2 \longrightarrow \text{ wall area} = 480 \text{ m}^2 \text{ for } P_{fusion} = 2 \text{ GW}$ $\Rightarrow \langle R \rangle = 6.22 \text{ m for NCSX-1 vs.} \langle R \rangle = 14 \text{ m for SPPS}$
- Chose $<\beta>$ = 6%: no reliable instability β limit, high equilibrium limit $\Rightarrow <B_{axis}>$ = 5.80 T for NCSX-1
- B_{max} on coil depends on plasma-coil spacing & coil cross section
- <*R*> and <*B*_{axis}> for the other cases are limited by the radial build and coil constraints to < $p_{n.wall}$ > = 2.13–2.67 MW/m²

B_{max}/**B**_{axis} Depends on Coil Cross Section

- Larger plasma-coil spacings lead to more convoluted coils and higher B_{max}/<B_{axis}>
- Minimum coil-coil separation distance determines k_{max}

Parameters Depend on Neutron Wall Power

• The NCSX-1 values are determined by $p_{n,max} = 5 \text{ MW/m}^2$ - <R> = 6.22 m, <B_{axis}> = 6.48 T, B_{max} = 12.65 T

 <R>, <B_{axis}>, B_{max} and d are constrained for the other cases by radial build and the allowable current density in the superconducting coils

0-D Study Gives Main Reactor Parameters

	NCSX-1	NCSX-2	MHH2-8	MHH2-16
$< p_{n,wall} > (MW/m^2)$	3.33	2.67	2.13	2.4
< <i>R</i> > (m)	6.22	6.93	6.19	6.93
<i><a< i="">>(m)</a<></i>	1.38	1.54	2.29	1.85
$< B_{axis} > (T)$	6.48	5.98	5.04	5.46
B _{max} (T)	12.65	10.9	14.9	15.2
j _{coil} (MA/m²)	114	119	93	93
K _{max}	3.30	5.0	2.78	1.87
coil width (m)	0.598	0.719	0.791	0.502
coil depth (m)	0.181	0.144	0.286	0.268
radial gap (m)	0.026	0.012	0.007	0.005
Coil volume (m ³)	60.3	63.4	61.4	60.3
Wall area (m ²)	480	600	750	667

- Successful in reducing reactor size (*<R*>) by factor ~ 2!
- Wall (blanket, shield, structure, vacuum vessel) area smallest for NCSX-1 ==> choose for more detailed study

1-D Power Balance Gives Plasma Parameters

	NCSX-1	NCSX-2	MHH2-8	MHH2-16
< <i>R</i> > (m)	6.22	6.93	6.19	6.93
<i><a< i="">> (m)</a<></i>	1.38	1.54	2.29	1.85
< <i>B</i> _{axis} > (T)	6.48	5.98	5.04	5.46
H-ISS95	4.15	4.20	3.75	4.10
$\left< n \right>$ (10 ²⁰ m ⁻³)	3.51	2.89	2.05	2.43
f _{DT}	0.841	0.837	0.837	0.839
f _{He}	0.049	0.051	0.051	0.050
$\langle T \rangle$ (keV)	9.52	9.89	9.92	9.74
$\langle eta angle,$ (%)	6.09	6.12	6.13	6.09

- ISS-95 confinement improvement factor of 3.75 to 4.2 is required; present stellarator experiments have up to 2.5
- ISS-2004 scaling indicates $\epsilon_{eff}^{-0.4}$ improvement, so compact stellarators with very low ϵ_{eff} should have high H-ISS values

Parameters Insensitive to Profile Assumptions

Variation	$\langle n \rangle$,10 ²⁰ m ⁻³	$\langle T \rangle$, keV	H-ISS95	$\langle eta angle,~\%$
Base case	3.51	9.52	4.15	6.09
Peaked <i>n</i>	3.36	9.85	4.00	6.03
0.1 n _{pedestal}	3.53	9.46	4.10	6.09
0.2 n _{pedestal}	3.57	9.34	4.05	6.09
<i>T</i> parabolic	3.23	10.82	4.40	6.36
<i>T</i> parabolic ²	3.60	9.01	4.00	5.92
0.1 <i>T</i> _{pedestal}	3.28	10.68	4.40	6.37
0.2 T _{pedestal}	3.22	11.11	4.50	6.50
Peaked n _z	3.42	9.97	4.15	6.21
T screening	3.48	9.15	3.75	5.81

H-ISS95 Sensitive to Parameter Assumptions

Next Steps

- Practical coil configurations need to be developed for some newer plasma configurations that have the potential for alpha-particle power losses of 5-10%
 - configurations examined thus far have alpha-particle power losses ~30%
- Analysis needs to be refined with the 1-D systems/ cost optimization code
 - assumed plasma temperature profiles are not consistent with high edge radiation losses and need to be calculated selfconsistently
 - optimum tradeoff between high $p_{n,wall}$ for smaller *R* and lower $p_{n,wall}$ for longer periods between maintenance needs to be determined

- Parameter determination integrates plasma & coil geometry with physics & engineering constraints and assumptions
- Initial results lead to factor ~2 smaller stellarator reactors (<R> = 6–7 m), closer to tokamaks in size
- Results are relatively insensitive to assumptions
- Next step is to refine results with the 1-D systems/ cost optimization code