16th ANS Topical Meeting on the Technology of Fusion Energy

O-I- 6.4

Research and Development of Landmine Detection System by a Compact Fusion Neutron Source

September 14, 2004 Monona Terrace Community and Convention Center Madison, WI

IAE, Kyoto University Kiyoshi Yoshikawa

PROGRAMME COMPONENTS Mine and UXO Clearance Anti-Personnel = 258,735 Anti-Tank = 12,185 UXO = 2,172,037

Mined area cleared = 254 sg km

MRE Trained : 9,700,000

10/12/2002

Impact - Current Victims

No National Survey

150 – 300 Victims/Mon th

<section-header><text><text>

EARLY FLAIL

Early mine detection

Characteristics of the landmines found in Croatia

Mine	Туре	Buried -B, Surface -S	Metal Content	Dimensions	Weight total	Weight explo.	Kill/ Casualty radius
				mm	kg	kg	m
PMR_2A	AP	S	m	φ66×122	1.70	0.10	1/25
TMA_3	AT	В	n	φ260×80	6.50	6.50	
PMA_2	AP	В	n	φ60×33	0.135	0.10	1/25
PMA_3	AP	В	n	φ104×40	0.183	0.035	1/25
TMR_P6	AT	B, tilt rod on S	m	φ290×137	7.20	5.10	
TMM_1	AT	В	m	φ250×85	8.65	5.60	
PROM_1	AP	B,protruding assembly on S	m	φ75×329	3.00	0.425	50/100
TMA_4	AT	В	n	φ280×65	6.30	5.50	
TMA_5	AT	В	n	300×275×113	6.60	5.50	
PMA_1	AP	В	n	142×68×35	0.40	0.20	1/25
MRUD	AP	S	m	231×46×89	1.50	0.90	50/200
TMA_1	AT	В	n	φ 310 ×100	6.50	5.40	
TMA_2	AT	В	n	330×260×100	6.50	5.40	
PMR_3	AP	S	m	φ80×150	1.70	0.41	20/100

Requirements for Landmine Detection >30g in depth of 20cm,100% detection

- 1) IAEA Report, "Application of Nuclear Techniques to Antipersonnel Landmines Identification", Report of the First Research Co-ordination Meeting, Zagreb, Croatia, IAEA/PS/RC-799, Nov. 23-26, 1999.
- 2) IAEA Report, "The Application of Nuclear Methods to Antipersonnel Landmines Identification", Report of the Second Research Co-ordination Meeting, Saint Petersburg, Russia, IAEA/PS/RC-799-2, Sept.11-14, 2001.
- 3) IAEA, "Application of Nuclear Techniques to Anti-personnel Landmines Identification", Third Research Co-ordination Meeting, Wien, Austria, IAEA HQ, May 19-23, 2003.

Nuclear methods under development

Name	Principle	Advantages	Issues	Status	CRP Groups				
Methods to find buried objects									
X-ray Backscatter	X-rays backscattered form soil can be imaged using collimated detectors	Real time images sufficiently detailed to identify landmine size and type, independent of surface clutter.	Limited x-ray penetration depth into soil, speed of ground coverage, portability, cost (minimum \$250K).	Tested with plastic and metal antitank mines as well as anti- personnel mines.	Shope (USA)				
Neutron Backscatter	Quantity of neutrons backscattered from soil can indicate concentrations of hydrogen.	Focuses on plastic landmines, insensitive to metallic clutter, emulates a metal detector (simple to use), simple and low cost, portability (<\$10K)	Sensitivity to hydrogen clutter, possible depth limitation, dependence of soil moisture stand off distance dependence.	Successful in laboratory	Brooks (SAF) Bom (HOL)				
Positron annihilation Compton scatter imaging (PACSI)	Gamma rays backscattered from soil can indicate density of buried objects.	Simple and low cost method for forming 3D images to a depth of 20-30 cm. Potentially low cost (about 10 k\$)	Experimental test needed.	Demonstrated in computer simulation.	Tickner (AUL)				
Methods to identify composition of buried objects									
Neutron- induced gamma rays	Neutrons enter the soil and cause emission of gamma rays. Identify elemental compositions from the gamma ray energies.	Identify composition of buried objects to determine presence of explosives. Compact portable system. Easy operated training.	Speed limited by neutron source strength. Background gamma rays must be subtracted.	The PELAN method (Prof. Vourvopoulos) has been demonstrated successfully with unexploded ordnance and is ready for field testing in minefield.	Vourovoupolous (USA) Hussein (CAN) Valkovic (CRO) Viesti (ITA) Ringbom (SWE)				
Backscattered neutrons	Measure the energies of backscattered neutrons.	Good penetration of neutrons into soil. High neutron cross sections.	Neutron energy measurement requires complex electronics & analysis.	Tested in laboratory. and verified by simulations	Csikai (HUN) Hlavac (SLV) Kuznetsof (RUS) Hussein (CAN)				

The battery-powered, handheld HYDAD-H landmine detector. (Univ. of Cape Town).

³He proportional N counter with ²⁵²Cf source.

Associated Particle Detection

Khlopin Institute St:Petersburg

Prototype of the mobile device with 2 µg ²⁵²Cf source with various investigated objects: TNT imitators, metallic cylinder, wet root etc.

16th ANS TOFE, September 14-16, 2004, Madison, WI

PELAN TRIALS, 8/99, OHIO, Battle

Outline of Project

Sensing technique

In 5 years, develop techniques to be able to identify Landmine exists? Plastic or LM? Then what kind ? Then, where is it? Detection thru neutron-related reactions, able to identify

Constituents ; (n, γ),(n,n' γ) Location; tomography, and by Innovative IEC neutron source; >10⁸n/s, in Pulse, CW modes

R&D Organization & Budget supported by **JST** (Japan Science and Technology Corporation Agency) 1)R&D of compact IEC 2) R&D of LM Detection **CW/pulse IEC Diagnostics** Kyoto-U., TIT, Kyushuu-U. Kyoto-U, Kansai-U. Tomography Kyoto-U., JAERI, Wakasa-bay **CW/Pulse power supply Energy Res. Center,** TIT **Total system** Kyoto-U., Nikki Co.

Budget(2002.9-2006.3); approx. US\$2~2.5M

Detection Method of Landmine -1-

Atomic number ratio in the explosive has a unique value

Kind of Evolosives	Atomic Number Ratio				
Kind of Explosives	H	С	Ν	0	
TNT	3	7	3	6	
Pentrite	8	5	4	12	
Hexogen	2	1	2	2	
Ammonium Nitrite	4	-	2	3	

• Measurement of Capture γ-rays

H(n, γ) reaction --- 2.22MeV γ -ray emission

N(n, γ) reaction --- 10.83MeV γ -ray emission

• Measurement of Back Scattering Neutrons H(n, n) reaction --- Scattering cross section of H is large

Detection Method of Landmine -2-

Neutron Detector

³He Proportional Counter

Organic Scintillator (γ-rays are detectable)

γ-ray Detector

Nal Scintillator

CsI Scintillator

BGO Scintillator

Tomography technique is applicable by using plural detectors

Detection Method of Landmine -3-

Back Scattered Neutrons

Capture γ**-rays**

If one could measure the time behavior of capture γ -rays, it would be possible to obtain information concerning buried depth of landmine, since thermal neutrons reach their peak at a certain time after the injection of neutron pulse depending on the depth from ground surface.

If one could measure the time behavior and time-dependent spectrum of back scattered neutrons, it would be possible to obtain information concerning buried depth of landmine.

Example of array of neutron source and detectors

Compact Power Supply Mountable on Vehicle

Components and specifications: DC and Pulse operation Compact Generator (16kW) Control (UPS: 2kW)

HV DC (CVCC 100kV, 120mA, 12kW) -Pulse (100kV, 10A, 50µs, >200pps)

Measurement system (2kW)

Issues of development

Compactness **Robustness** Modular type Molded Fail safe system **High Voltage Connection** Dry type connection

Image¹

Circuit of Prototype Pulse Generator System

Typical Waveforms (Long Pulse)

Pressure: 14.0 mTorr/H₂ Charging Voltage: -20.0 kV Storage Capacitor:1.1 µF

The delay will be reduced by assistance of magnetron discharge developed at Kyoto Univ.

Pressure: 14.0 mTorr/H₂, Charging Voltage: -20.0 kV, Storage Capacitor: 1.1

Suppression of the neutron generation caused by the afterglow of discharge pulse Higher S/N ratio for landmine detection

16th ANS TOFE, September 14-16, 2004, Madison, WI

Experimental Setup

Neutron Production Rate

Final Target (-90 kV, 10 A)

The maximum neutron production rate 2.0 x 10⁸ n/s for -51 kV, 7.3 A obtained in a pulsed discharge

Magnetron-type Ion Source at Negative Potential

Controllability of Pulse Operation Magnetron Discharge

IEC Pulse Operation 5 mTorr, 40 kV 5 mTorr, 60 kV 80 80 2 Magnetron **V**a ا م^م [الا الالا ا /_a [mA] V_a [kV] 40 K 0 0 0 100 100 80 80 I_{IEQ} ر التان [لاک التان [لاک ر ¹⁰⁰ [لار ا IEC [mA] [mA IEC Ц 0 0 t [sec] -12 -6 6 12 -12 -6 6 12 0 *t* [sec]

Design & Fabrication of an Ultra-small Neutron Source

- 1x10⁻⁶Pa achieved after baking
- a 65¢ O.D cathode supported by upper feedthrough
- 9CF34 flanges for ion production by magnetron discharge

200 vacuum chamber

Hollow cathode and its support

Ultra-compact & high-voltage standing capability

Preliminary testing

- CF70 flange feedthrough for 100kV
- 80kV applied for 10⁻⁵ Pa
- neutron production for 30 ~ 40kV

IECFdischarge(30kV, 6mA, 2.25Pa)

Trajectories of Various Positions of Ion Source

The ion source setting on the horizontal plane is very efficient.

Ion Bombardment

Photo of the experiment

About 50% ions are lost by hitting the feed-through In the IEC simulation, we can not neglect the existence of the feedthrough and the cathode structure.

Capture reaction rate of N and H

Largely depend on depth of landmine and water content in the ground

> ➢In case of shallow position, high water contents causes high capture reaction rate

> In case of deep position, optimum water contents causes high capture reaction rate

➢In case of water contents less than 5 %, reaction rate does not depend on depth.

Experiment with 14MeV DT neutron source with melamine (C₃H₆N₆)

•NE213 scintillator was used for neutron spectrum measurement
•Low energy neutron was increased about 5 % with Melamine
•Same as calculated results

Experiment with ²⁵²Cf neutron source (2)

•NE213 scintillator was used for neutron spectrum measurement
•Low energy neutron was increased about 4 % with Melamine
•Same as calculated results

Goal of Project

Detection thru neutron-related reactions, able to identify LM with an Innovative IEC neutron source Constituents and Location

Companion Papers

- [1]K.YAMAUCHI, *et. al.*, "Pulsed Operation of a Compact Fusion Neutron Source Using a High-Voltage Pulse Generator Developed for Landmine Detection", P-II-23, 16th TOFE (2004).
- [2] T. TAKAMATSU, *et. al.*, "Improvement of an Inertial Electrostatic Confinement Device", P-II-16, 16th TOFE (2004).
- [3]H. OSAWA, *et. al.*, "Optimal Position of Ion Source for High Performance of IEC", **P-II-17**, 16th TOFE (2004).
- [4]H. OSAWA, *et. al.*, "Numerical Study on Hollow Cathode Discharge of IEC Fusion", **P-II-18**, 16th TOFE (2004).