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Engineering scaling is a process to develop
meaningful tests at experimental conditions and
parameters less than those in a reactor
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Reference solid breeder blankets
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Engineering scaling laws are exercised in designs to

preserve important phenomena

e However, engineering scaling In “Act-Alike” test modules
has limitations

— Not all issues can be addressed simultaneously in one submodule

« Important phenomenalissues that “can be studied” during the
first phase of ITER testing

Structural thermo-mechanical integrity
Tritium generation, neutronic code and database validation
Instrumentation development

Pebble bed thermo-mechanical behavior and impacts on breeder
temperature profiles

Tritium release, permeation, and inventory
Effects of rapid changes in properties in earlier phase of irradaition

Combined parallel and series tests are applied to address

different key issues



Operating parameters that scaling rules
would be applied and designed for

Temperature/temperature gradients

Stress magnitudes and profiles
Deformation/strain levels

Velocity magnitudes and heat transfer
characteristics

Purge gas compositions/flow rates

Tritium breeding ratio/tritium production rate
Tritium release, inventory, permeation

Color legend:
Design relevance
Design independence




Engineering scaling rules for solid breeder test
blanket submodule designs start with preserving
helium coolant temperatures

e Temperatures determine blanket thermomechanical
behavior, tritium release and permeation

e All elements’ temperatures tie to helium coolant’s
temperature through “an array of heat conductance”

* Preserving helium coolant temperature serves as the basis
for meaningful solid breeder TBM designs

"

T = + 4

element helium C

For blankets using ferritic steel as the structural material,
helium inlet/outlet temperatures have been set at 300/500°C

for achieving adequate thermal efficiency and satisfying
structural operating criteria



Simultaneously reducing geometrical size and
loading implies a significant reduction of the coolant

mass flow rate
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Modification to the first wall coolant routing scheme
iIs needed to preserve first wall heat transfer
characteristics

Prototype:

q;designmax (: OSMW / mz) ~ q; 1 coolant channel per flow path
Scale model (current design):
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Disproportional heat distribution between surface
heat and neutron loads creates complexity in the
scale model design

Parameter Value
Power from surface heat flux 0.249 MW
g, (0.5x0.5+0.25x0.5) Power from breeding zone with | 0.622 MW
> = 06 =0.625 | 1.2 multiplication factor)
qp ) Helium inlet/outlet temperature | 300/500°C
0.78 Mass flow rate to first wall 0.9 kg/s
ns - — .
= =0.1625 Mass flow rate to breeding zone | 0.82 kg/s
n D 4.8 Mass flow rate -bypass 0.08 kg/s
Coolant AT first wall 53°C
Coolant AT breeding zone 146°C

 In the scale model, a higher mass flow rate is needed to cool the first
wall to satisfy structural temperature limitations

« A bypass flow scheme is used to direct the helium away from entering
the breeding zone in order to maintain prototype type coolant
temperature and temperature boundary conditions for the breeder
units.



Helium thermal-hydraulic design and parameters
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First wall thermo-mechanical analysis:
temperature analysis

One flow path consists of 5 coolant channels connected in series
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First wall thermo-mechanical analysis:
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First wall thermo-mechanical analysis:
Stress profiles

Maximum stress is lower than the stress limit and is similar to the
maximum value of the JA DEMO design
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First wall thermo-mechanical analysis:

Displacement profiles
* A non-uniform displacement due to a non-uniform heating (a non-
prototype condition?)
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Thermal analysis for breeding units show that
prototype temperatures have been preserved

Layer configuration
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Preserving breeder unit temperature magnitude and
gradient is essential for thermo-mechanical tests

* The elastic modulus and creep compaction of a solid breeder pebble
bed is related to stress and temperature levels by the expression:

E =130xc ™"

and
—-10,220

¢ =12.12x(0)""t"%e T

where o is the axial stress in MPa, T temperature in °C and t time in
seconds.

« Stress and temperature are the key parameters affecting pebble bed
thermo-mechanical behavior

 The stress is generated through a temperature gradient across the
region and differential thermal expansions between coupling elements
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Prototype stress levels have been preserved in the

scale model (layer configuration)
e FEM analysis using experimentally derived ceramic breeder pebble bed
modulus, stress-strain consecutive equations

e Similar stress levels found in prototype and scale models with a maximum
stress in the bed of about 3 MPa.

e The coolant plate deformation is a combined effect of thermal expansion,
mechanical constraints, and dimensions.

Laboratory R&D goal is to predict thermo-mechanical parameters accurately.
Contour plots of stress levels inside SB pebble beds !

Ogap= 0.246 mm

Fixed \
' Goax: 3 MPa at 33.7 mm

BC
\IPrototype model: toroidal length 44 cm; radial width: 9 mm

Ogap= 0-19 mm

Symmetric BC

t | Omax- 3 MPa at 48.7 mm

v ITER scale model: toroidal length 32 cm; radial width: 18 mm 17



Equivalent von Mises Stress [MPa]

Creep and stress relaxation evolutions are
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Stress profiles show concentration with 2-D characteristics

Prototype model (EU design) for edge-on configurations

47 cm radial length o _
1 cm toroidal width Li,SiO, pebble bed considered

Modified ITER Scale model
reproducing temperature magnitudes
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Neutronic submodule is designed to perform initial
check of neutronic code and data
(tritium production and heating generation rates)

The submodule incorporates two layer design
configurations: one thermally acts alike and the

other looks alike /{, ﬂ\\
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Top View of the 2-D nuclear model

(The model includes neutronic submodule and its neighboring submodule, frame structure

and vacuum vessel placed in a % port in ITER)
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Toroidal Profile of Tritium Production Rate (TPR) in each Breeder

Layer of the Two Test Blanket Configurations
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*Profiles of the TPR is nearly
flat over a reasonable distance
in the toroidal direction where
measurements can be
performed (10-16 cm in the left
Config. and 10-20 cm in the
right Config.).

*Steepness in the profiles near
the ends of layers is due to
presence of Be layer and to
neutrons reflected by the
structure contact in the vertical
coolant panels (VCP). This is
more pronounced at the outer
VCP. TPR values are larger at
these locations by a factor of

1.4-1.5



W/CC

Nuclear Heating Across the U.S. Two Test Blanket Configurations

in the Toroidal Direction at Depth 42 mm Behind the FW
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*Heating rate in the breeder
of the Ift. Config. is a factor
of ~4 larger than in Be of
the Rt. Config. and is flat
over ~10 cm. It peaks near
the vertical coolant panels.

 Heating profile in
beryllium is flat over the
entire layer. This feature is
applicable to other beryllium
layers (not shown)

*The features shown
indicate the heterogeneity
effect which can’t be
produced with 1-D model



Summary

Engineering scaling analysis has been successfully
applied to ITER solid breeder TBM designs

Primary

parameters such as temperature magnitudes,

stress and strain levels have been preserved In the
scale model

First wa
tempera
flow pat

2-D nuc
and nuc

| design has reproduced prototype maximum
ture and stress levels by using a 5 channel per
n design.

ear analysis shows that flat tritium production
ear heating profiles can be obtained in a

quarter

model.

port submodule with two design configurations.
This ensures that a high spatial resolution for any
specific measurement can be achieved in the scale
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