
1

Engineering Scaling Requirements for 
Solid Breeder Blanket Testing

Presented by 

Alice Ying

With contributions from

M. Abdou, S. Sharafat, M. Youssef, J. An, 
P. Rainsberry, R. Hunt

TOFE  Meeting
September 14, 2004  
Madison, Wisconsin



2

Engineering scaling is a process to develop
meaningful tests at experimental conditions and 

parameters less than those in a reactor
Aspects of experimental 

constraints where 
engineering scaling 
practices issue

• Constraints in materials 
and material properties

• Constraints in operating 
conditions: 
– Designed for 
– Given 

• Constraints in geometric 
dimensions/sizes

Solid Breeder Test Blanket Submodule 
Basic Elements

ITER
Neutron wall load at outboard mid-plane: 
0.78 MW/m2

Surface heat flux: max. 0.5 MW/m2

nominal: 0.1 MW/m2

Design: 0.25 MW/m2 -0.5 MW/m2
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Reference solid breeder blankets

Layer configuration approach 

AERIS- CS Ceramic Breeder 
Blanket Module 

EU HCPB Demo blanket 
breeder unit

Edge-on configuration 
approach
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Engineering scaling laws are exercised in designs to 
preserve important phenomena

• However, engineering scaling In “Act-Alike” test modules 
has limitations
– Not all issues can be addressed simultaneously in one submodule

• Important phenomena/issues that “can be studied” during the 
first phase of ITER testing
– Structural thermo-mechanical integrity
– Tritium generation, neutronic code and database validation 
– Instrumentation development
– Pebble bed thermo-mechanical behavior and impacts on breeder 

temperature profiles 
– Tritium release, permeation, and inventory
– Effects of rapid changes in properties in earlier phase of irradaition

• Combined parallel and series tests are applied to address 
different key issues 
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Operating parameters that scaling rules 
would be applied and designed for

• Temperature/temperature gradients
• Stress magnitudes and profiles
• Deformation/strain levels 
• Velocity magnitudes and heat transfer 

characteristics
• Purge gas compositions/flow rates
• Tritium breeding ratio/tritium production rate
• Tritium release, inventory, permeation

Color legend:
Design relevance
Design independence
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Engineering scaling rules for solid breeder test 
blanket submodule designs start with preserving 

helium coolant temperatures

• Temperatures determine blanket thermomechanical
behavior, tritium release and permeation

• All elements’ temperatures tie to helium coolant’s 
temperature through “an array of heat conductance”

• Preserving helium coolant temperature serves as the basis 
for meaningful solid breeder TBM designs
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For blankets using ferritic steel as the structural material, 
helium inlet/outlet temperatures have been set at 300/500oC 
for achieving adequate thermal efficiency and satisfying 
structural operating criteria
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Simultaneously reducing geometrical size and 
loading implies a significant reduction of the coolant 

mass flow rate
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Modification to the first wall coolant routing scheme 
is needed to preserve first wall heat transfer 

characteristics
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Disproportional heat distribution between surface 
heat and neutron loads creates complexity in the 

scale model design

146oC Coolant ∆T breeding zone
53 oC Coolant ∆T first wall 
0.08 kg/sMass flow rate -bypass
0.82 kg/sMass flow rate to breeding zone 
0.9 kg/sMass flow rate to first wall
300/500oC Helium inlet/outlet temperature 

0.622 MWPower from breeding zone with 
1.2 multiplication factor)

0.249 MWPower from surface heat flux
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• In the scale model, a higher mass flow rate is needed to cool the first 
wall to satisfy structural temperature limitations 

• A bypass flow scheme is used to direct the helium away from entering 
the breeding zone in order to maintain prototype type coolant 
temperature and temperature boundary conditions for the breeder 
units.
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Helium thermal-hydraulic design and parameters

1 of 10 alternative 
cooling flow paths

First wall inlet 
manifold
(Tin= 300oC)

First wall outlet manifold (also 
layer breeding units inlet manifold)
(T= 353oC)

Layer breeding units outlet 
manifold (T=500oC)

Edge-on breeding 
units inlet manifold 
(1 of 2 alternative 
paths) T=353oC

Edge-on breeding units outlet 
manifold (1/2) T=500oC

Mass flow rate in 
lines:
In: 0.9 kg/s
Out: 0.82 kg/s
By-pass: 0.08 kg/s
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First wall thermo-mechanical analysis: 
temperature analysis

One flow path consists of 5 coolant channels connected in series
0.5 MW/m 2

0.25 MW/m 2

Tmax = 522.8oC

He Tin = 300oC/Tout= 353oC

Helium velocity = 63.6 m/s
Heat transfer coefficient= 5890 W/m2k

Total thickness: 28 mm
(5 mm front/7 mm back)
Channel dimension: 16 x 13 mm2

Pitch: 14.34 mm 

Total elements: 
280,570
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First wall thermo-mechanical analysis: 
temperature profile for one flow path

out

in
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First wall thermo-mechanical analysis: 
Stress profiles

σmax = 268.4 MPa
(located at the corner of 
the front inner wall)

Maximum stress is lower than the stress limit and is similar to the 
maximum value of the JA DEMO design 

• Yield strength at 550oC = 380 MPa
• Maximum allowable stress for piping 

design = 2 * yield strength (ASME)
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First wall thermo-mechanical analysis: 
Displacement profiles

• A non-uniform displacement due to a non-uniform heating (a non-
prototype condition?)

δmax: 3.51 mm
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Thermal analysis for breeding units show that 
prototype temperatures have been preserved

SB

Be

Layer configuration Edge-on configuration 

• Heat transfer coefficient 1200 W/m2k
• KSB= f(T); ~ 1W/mk
• kBe= f(T,s) 6W/mk used
• hc = 4000 W/m2k
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Preserving breeder unit temperature magnitude and 
gradient is essential for thermo-mechanical tests

• The elastic modulus and creep compaction of a solid breeder pebble 
bed is related to stress and temperature levels by the expression:

and

where σ is the axial stress in MPa, T temperature in oC and t time in 
seconds. 

• Stress and temperature are the key parameters affecting pebble bed 
thermo-mechanical behavior 

• The stress is generated through a temperature gradient across the 
region and differential thermal expansions between coupling elements

47.0130 σxE =

Tc etx
220,10

2.065.0)(12.12
−

= σε
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Prototype stress levels have been preserved in the 
scale model (layer configuration)

• FEM analysis using experimentally derived ceramic breeder pebble bed 
modulus, stress-strain consecutive equations

• Similar stress levels found in prototype and scale models with a maximum 
stress in the bed of about 3 MPa. 

• The coolant plate deformation is a combined effect of thermal expansion,  
mechanical constraints, and dimensions.

Laboratory R&D goal is to predict thermo-mechanical parameters accurately.

δgap= 0.246 mm

Symmetric BC

Prototype model: toroidal length 44 cm; radial width: 9 mm

ITER scale model: toroidal length 32 cm; radial width: 18 mm
σmax: 3 MPa at 48.7 mm

δgap= 0.19 mm

Fixed
BC

X

Y

Contour plots of stress levels inside SB pebble beds

σmax: 3 MPa at 33.7 mm
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Creep and stress relaxation evolutions are 
preserved under steady state operations
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• A R&D goal is to 
address and model  
the effect of pulsed 
operations on the 
pebble bed 
integrities and 
performance



19

Stress profiles show concentration with 2-D characteristics 
for edge-on configurations

Modified ITER Scale model
reproducing temperature magnitudes
35 cm radial length (geometric 
constraint) 
1.8 cm toroidal width near FW
3.2 cm toroidal width at the back
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Prototype model (EU design)
47 cm radial length
1 cm toroidal width

σmax= 1.75 MPa

σmax= 2.35 MPa

δmax = 0.41 mm 
at 21 cm 

δmax = 0.18 mm 
at 15.2 cm

Fixed x BC

X
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Fixed Y BC

Stress evolution at mid-plane of 
ITER scale model

Li4SiO4 pebble bed considered
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Neutronic submodule is designed to perform initial 
check of neutronic code and data 

(tritium production and heating generation rates)

• The submodule incorporates two layer design 
configurations: one thermally acts alike and the 
other looks alike

• Complex one- and two-
D performance features 
for code evaluations
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Top View of the 2-D nuclear model 
(The model includes neutronic submodule and its neighboring submodule, frame structure 

and vacuum vessel placed in a ½ port in ITER)



22

Toroidal Profile of Tritium Production Rate (TPR) in each Breeder 
Layer of the Two Test Blanket Configurations 

•Profiles of the TPR is nearly 
flat over a reasonable distance 
in the toroidal direction where 
measurements can be 
performed (10-16 cm in the left 
Config. and 10-20 cm in the 
right Config.).

•Steepness in the profiles near 
the ends of layers is due to 
presence of Be layer and to 
neutrons reflected by the 
structure contact in the vertical 
coolant panels (VCP).  This is 
more pronounced at the outer  
VCP.  TPR values are larger at 
these locations by a factor of 
1.4-1.5 
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Nuclear Heating Across the U.S. Two Test Blanket Configurations 
in the Toroidal Direction at Depth 42 mm Behind the FW

•Heating rate in the breeder 
of the lft. Config. is a factor 
of ~4 larger than in Be of 
the Rt. Config. and is flat 
over ~10 cm. It peaks near 
the vertical coolant panels. 

• Heating profile in 
beryllium is flat over the 
entire layer. This feature is 
applicable to other beryllium 
layers (not shown)

•The features shown 
indicate the heterogeneity 
effect which can’t be 
produced with 1-D model
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Summary

• Engineering scaling analysis has been successfully 
applied to ITER solid breeder TBM designs

• Primary parameters such as temperature magnitudes, 
stress and strain levels have been preserved in the 
scale model

• First wall design has reproduced prototype maximum 
temperature and stress levels by using a 5 channel per 
flow path design. 

• 2-D nuclear analysis shows that flat tritium production 
and nuclear heating profiles can be obtained in a 
quarter port submodule with two design configurations. 
This ensures that a high spatial resolution for any 
specific measurement can be achieved in the scale 
model.
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