## Helical Fusion Power Plant Economics Studies

T. J. Dolan, K. Yamazaki, and A. Sagara

National Institute for Fusion Science (NIFS), Japan

16<sup>th</sup> TOFE Conference, Madison, WI, USA 11-13 September 2004



## **Physics-Engineering-Cost (PEC) Code**

Purpose: Compare COE from tokamaks, heliotrons, and modular stellarators.

Improvements data from 3 blanket-shield designs new cost schedule (based on the ARIES) more recent unit costs improved algorithms

COE variations with plasma and engineering parameters.



## **PEC Code**

Assumes  $R_p/a_p$ ,  $\beta$ ,  $T_o$ ,  $P_e$ 

Calculates plasma parameters and power balance

Adjusts  $R_p$  to match desired  $P_e$ 

Masses & unit costs (kg)  $\rightarrow$  capital cost  $\rightarrow$  COE

Does not calculate

- Magnet coil details
- Plasma equilibrium, stability, and transport
- Structural masses
- Divertor details.

These are calculated elsewhere and input to the code.

#### Heliotron Coils 1 = 2, m = 10



#### **Heliotron Reactor Model**



## **Toroidal Magnetic Field in Plasma**

1 = 2 stellarators

$$\begin{split} &\mathsf{B}_{\mathsf{o}}/\mathsf{B}_{\mathsf{max}} = 0.476 \; (80\mathsf{S}_{\mathsf{coil}}/\mathsf{R}_{\mathsf{o}})^{0.4} \; \; (\mathsf{m}/10)^{0.82} \; (1.2/\gamma_{\mathsf{c}})^{0.05} \\ &\mathsf{S}_{\mathsf{coil}} = \mathsf{coil\ cross\ sectional\ area,\ derived\ from\ results} \\ & \mathsf{of\ detailed\ computations.} \end{split}$$

Large S<sub>coil</sub>  $\rightarrow$  coil current density < maximum.

## **Average Plasma Density**

 $n_{av} = \beta B_t^2 / (4\mu_o k T_{av}).$ 

- k = Boltzmann constant,
- $\mu_{o}$  = permeability of free space,
- B<sub>t</sub> = toroidal magnetic field at plasma center
- T<sub>av</sub> = density-weighted average temperature

# **Cost of Electricity (COE)**

 $COE = [C_{AC} + (C_{O&M} + C_{SCR} + C_{F})(1+y)^{Y}]/(8760P_{e}f_{avail}) + C_{D&D}$ C<sub>AC</sub> = (fixed charge rate)(total capital cost), M\$/year  $C_{O&M}$  = operations & maintenance cost, M\$/year C<sub>SCR</sub> = scheduled component replacement cost, M\$/year  $C_{F}$  = annual fuel costs, M\$/year = annual escalation rate У Y = construction period, assumed to be 6 years = net electrical power output, MWe P f<sub>avail</sub> = plant availability factor

 $C_{D&D}$  = decontamination & decommissioning, mill/kWh.

#### SPPS Fusion Power Core System



## **PEC Modelling of ARIES-SPPS**

| COE, Mill/kWh       | PEC est. | SPPS  |
|---------------------|----------|-------|
| Capital cost        | 67.27    | 63.02 |
| Operation cost      | 8.89     | 9.16  |
| Fuel                | 0.03     | 0.03  |
| Blanket replacement | 1.58     | 1.9   |
| Decontamination &   | 0.5      | 0.5   |
| Decommissioning     |          |       |
| Total               | 78.3     | 74.6  |

## **Blanket-Shield Comparison**

|                                  | Units              | RAF-Flibe                             | V-Li (SPPS)                                                    | SiC-PbLi                                             |
|----------------------------------|--------------------|---------------------------------------|----------------------------------------------------------------|------------------------------------------------------|
| Inboard FW/BL/SH/VS thickness    | m                  | 0.95                                  | 1.29                                                           | 1.02                                                 |
| Inboard blanket+shield cost      | M\$/m <sup>2</sup> | 0.27                                  | 0.37                                                           | 0.25                                                 |
| Outboard<br>blanket+shield costs | M\$/m <sup>2</sup> | 0.27                                  | 0.37                                                           | 0.34                                                 |
| Coolant outlet<br>Temperature    | С                  | 560                                   | 610                                                            | 1100                                                 |
| Energy conversion<br>Efficiency  | %                  | 40                                    | 46                                                             | 59                                                   |
|                                  |                    | Thinnest;<br>But lowest<br>efficiency | Thickest & most<br>expensive;<br>but might be<br>made thinner. | Highest<br>efficiency;<br>but expensive<br>materials |

## **ISS-95 and NLHD-D1 scalings**

 $\tau_{iss}$  = 0.26 P<sup>-0.59</sup> n<sub>e</sub><sup>0.51</sup> B<sup>0.83</sup> R<sup>0.65</sup> a<sup>2.21</sup>  $\iota_{2/3}^{0.4}$ 

 $\tau_{\rm NLHD} = 0.269 \ {\rm P}^{-0.59} \ {\rm n_e}^{0.52} \ {\rm B}^{1.06} \ {\rm R}^{0.64} \ {\rm a}^{2.58}$ 

P = input heating power (MW)

n<sub>e</sub> =average electron density (10<sup>20</sup> m<sup>-3</sup>)

B = vacuum magnetic field at plasma center (T)

R = plasma major radius (m)

a = average plasma minor radius (m)

 $\iota_{2/3}$  = is an average rotational transform

## **Energy Confinement H-factor**

$$H_{iss} = \tau_E / \tau_{iss}$$

 $\tau_{\rm F}$  = observed or required energy confinement time.

 $H_{iss} = 1.5$  achieved experimentally

## **Required H**<sub>iss</sub> for Ignition



## **Required H**<sub>iss</sub> for Ignition



## **Required H<sub>iss</sub> vs. Iron Impurity Fraction**



## **Base Case Input Parameters**

| Average aspect ratio                 | $R_p/$                  | 5.7                  |
|--------------------------------------|-------------------------|----------------------|
| Coil pitch parameter                 | γ                       | 1.25                 |
| Plasma average beta                  | β                       | 3 %                  |
| Net electrical power output          | Pe                      | 1.94 GWe             |
| Maximum field at coil                | B <sub>max</sub>        | 13                   |
| Coil width/depth                     | w/d                     | 2                    |
| Coil maximum current density         | J <sub>max</sub>        | 30 MA/m <sup>2</sup> |
| Attainable energy confinement        | H <sub>iss</sub>        | < 1.7                |
| relative to ISS-95:                  |                         |                      |
| Energy conversion efficiency         | η                       | 40 %                 |
| M(poloidal coils) / M(helical coils) | <b>f</b> <sub>pol</sub> | 0.4                  |
| M(structure) / M(total coils)        | f <sub>sup</sub>        | 0.5                  |
| Central temperature                  | To                      | 20 keV               |
| Plasma elongation                    | κ                       | 2.0                  |

## **Direct Capital Cost Components**

Magnet coil ~ 24% of the direct capital cost

Other components 4-6% each: Blanket Shield Heating systems Structure Vacuum system are 4-6% each

Cost reduction of an individual component does not have a large effect on COE

## **Base Case COE**

| COE capital cost (mil/kWh)    | 59.751 |
|-------------------------------|--------|
| COE operations (mil/kWh)      | 7.875  |
| COE fuel (mil/kWh)            | 0.019  |
| COE replacement (mil/kWh)     | 3.387  |
| COE Decon. & decom. (Mil/kWh) | 0.612  |
|                               |        |

Total COE (mil/kWh)

71.6

## **Base Case Results**

| Magnetic field ratio   | B <sub>o</sub> /B <sub>max</sub> | 0.48                  |
|------------------------|----------------------------------|-----------------------|
| Major radius of plasma | R <sub>p</sub>                   | 14.4 m                |
| Fusion power           | P <sub>f</sub>                   | 4.5 GWth              |
| Neutron wall load      |                                  | 2.1 MW/m <sup>2</sup> |
| Mass of helical coils  | M <sub>hel</sub>                 | 6.2 kt                |
| Mass of structure      | M <sub>st</sub>                  | 4.3 kt                |
| Mass of fusion island  | M <sub>fi</sub>                  | 23.4 kt               |
| Total capital cost     | C <sub>cap</sub>                 | 7.9 G\$               |
| Relative capital cost  | $C_{cap}/P_{e}$                  | 4.1 \$/W              |
| Relative capital cost  | $C_{cap}/P_{e}$                  | 431. Yen/W            |
| Mass power density     | MPD                              | 83. kWe/t             |
| Cost of electricity    | COE                              | 72 mil/kWh            |
| Cost of electricity    | COE                              | 7.6 Yen/kWh           |

#### **COE vs. Central Temperature**



#### **Comparison of Plasma Aspect Ratios**



#### **Heliotron Reactor Model**



## COE vs. Coil width/depth



#### **COE vs. Plasma-Wall Gap Size**



#### **COE vs. Plasma-Coil Distance**



#### **COE vs. Profile Parameters**

 $\begin{array}{l} n(x)/n_{o} = (1 - y_{ed})(1 - x^{p})^{q} \left[ d + (1 - d)x^{2} \right] + y_{ed} \\ T(x)/T_{o} = (1 - t_{ed})(1 - x^{r})^{s} + t_{ed} \end{array}$ 



#### Effect of Hollow Density Profiles $n(x)/n_o = (1-y_{ed})(1-x^p)^q [d + (1-d)x^2] + y_{ed}$ $T(x)/T_o = (1-t_{ed})(1-x^r)^s + t_{ed}$





## **COE vs. Neutron Wall Load**



#### COE vs. beta







## **COE vs. Net Electrical Power**



#### **COE vs. Net Electrical Power**

#### NLHD-D1 Scaling



#### **Large Power Stations**

- 8 hydroelectric plants > 5 GWe
- Three Gorges Dam (China) = 18.2 GWe (2009)
- 9 nuclear power stations > 4 GWe.
- New European PWR = 1.6 GWe, single reactor (Limited by control and safety issues)

Heliotron Base Case = 1.94 GWe

#### **Grid Perturbation Avoidance**

5 large reactors at one site, each 60% hydrogen, 40% electricity to grid.

Outage of one reactor: 4 reactors, each 50% hydrogen, 50% electricity to grid.

Same electrical power to grid.

## **COE vs. Blanket Lifetime**



#### **Fusion Power Island Mass vs. P**<sub>e</sub>



#### **Relative Capital Cost vs. P**<sub>e</sub>



## **Comparison with ITER**

|                         | Original<br>ITER | Reduced<br>ITER | Heliotron |
|-------------------------|------------------|-----------------|-----------|
| TF coil, kt             | 14.8             | 6.6             |           |
| CS coil, kt             | 1.5              | 2.8             |           |
| PF coil, kt             | 3.8              | 2.6             |           |
| Total coil<br>mass, kt  | 20.1             | 12.0            | 13.0      |
| Total capital cost, G\$ | ~ 10             | ~ 5             | ~ 8       |

## **COE** in Japan

| Source                | COE       |
|-----------------------|-----------|
|                       | (Yen/kWh) |
| Fission reactors      | 5.3       |
| Coal                  | 5.7       |
| Natural gas           | 6.2       |
| Oil                   | 10.7      |
| Pumped hydro storage  | 11.9      |
| Heliotron "Base Case" | 7.6       |

NLHD-scaling,  $\beta$  = 5% Heliotron: ~ 5.2 Yen/kWh

## **CHS Modular Coil System**



#### **Heliotron Reactor Model**



# **Heliotrons & Modular Coil Stellarators**

| Heliotrons                             | Modular coil stellarators       |
|----------------------------------------|---------------------------------|
| Theoretical beta < 5%,                 | Potential beta > 5%, needs      |
| 4% achieved                            | experimental verification.      |
| Alpha confinement uncertain            | Potentially good alpha          |
|                                        | confinement                     |
| Plasma aspect ratio restricted         | Aspect ratio can vary over wide |
| by $\gamma_c$ to approximate range 5.5 | range. Low ratios may yield     |
| 8.5.                                   | lower COE.                      |
| Natural helical divertor               | Local divertors, space problem  |
| Achieved Hiss ~ 1.5.                   | Achieved Hiss ~ 1.5.            |
| NLHD-D1 scaling favorable              |                                 |



# **Heliotrons & Modular Coil Stellarators**

| Heliotrons                       | Modular coil stellarators       |
|----------------------------------|---------------------------------|
| Coil winding accuracy uncertain. | Coil winding & alignment to be  |
|                                  | demonstrated by W-7X.           |
| Coil failure probably unfeasible | Failed coil or module could be  |
| to repair.                       | replaced.                       |
| Alignment should last for the    | Coils must be re-aligned after  |
| lifetime of the plant            | removal of a module             |
| Lifetime blanket might be        | Periodic replacement of blanket |
| feasible.                        | modules envisioned.             |
| Large ports available for first  | Port size generally smaller,    |
| wall replacement.                | depends on specific design.     |
| Elliptical shape cross section   | Odd shaped cross sections,      |
| permits close proximity of       | more complex.                   |
| blanket and shield.              |                                 |



## Conclusions

Neutron wall load ~ 4 MW/m<sup>2</sup> desirable. Increase  $B_{max}$ ,  $\beta$ , or  $P_{f}$ . COE vs.  $\beta$  is steep near  $\beta$  = 3%, flattens out at  $\beta$  > 6%, Higher  $\beta \rightarrow$  smaller  $a_{p}$ , lower  $\tau_{F}$ Strong economy of scale: High  $P_{P} \rightarrow$  competitive COE Many high-power stations already exist.  $R_p/\langle a_p \rangle = 5.7$  has lower COE than  $R_p/\langle a_p \rangle = 8.1$ Hollow electron density profiles  $\rightarrow$  higher COE  $B_{max} < 13 T$  $\rightarrow$  higher COE



## **Estimated Component Costs**

|                                    |        | % direct  |
|------------------------------------|--------|-----------|
|                                    | M\$    | cap. cost |
| 20. Land & land rights             | 12.7   | 0.3       |
| 21. Structures & site facilities   | 450.3  | 11.1      |
| 22. Reactor plant equipment        | 2798.2 | 68.7      |
| 22.1 fusion reactor equipment      | 2090.2 | 51.3      |
| 22.1.1 FW/blanket/reflector        | 259.4  | 6.4       |
| 22.1.2 shield                      | 254.3  | 6.2       |
| 22.1.3 magnets                     | 956.7  | 23.5      |
| 22.2.4 current drive & heating     | 168.8  | 4.1       |
| 22.1.5 primary structure & support | 169.3  | 4.2       |
| 22.1.6 vacuum systems              | 198.9  | 4.9       |
| 22.1.7 power supply                | 67.6   | 1.7       |
| 22.1.8 impurity control & divertor | 15.2   | 0.4       |
| 22.1.10 ECRH breakdown system      | 4.9    | 0.1       |