ARIES-IFE Assessment of Operational Windows for IFE Power Plants

Farrokh Najmabadi and the ARIES Team UC San Diego

16th ANS Topical Meeting on the Technology of Fusion Energy

September 14-16, 2004 Madison, WI

Electronic copy: http://aries.ucsd.edu/najmabadi/TALKS UCSD IFE Web Site: http://aries.ucsd.edu/IFE

ARIES Integrated IFE Chamber Analysis and Assessment Research Is An Exploration Study

Objectives:

- > Analyze & assess integrated and self-consistent IFE chamber concepts
- Understand <u>trade-offs</u> and identify <u>design windows</u> for promising concepts. The research is **not** aimed at developing a point design.

Approach:

- Six classes of target were identified. Advanced target designs from NRL (laserdriven direct drive) and LLNL (Heavy-ion-driven indirect-drive) are used as references.
- > To make progress, we divided the activity based on three classes of chambers:
 - Dry wall chambers;
 - Solid wall chambers protected with a "sacrificial zone" (e.g., liquid films);
 - Thick liquid walls.

ARIES-IFE study was completed in September 2003.

Outline

Target Design

- Target emission spectra and energy and particle loads on the chamber wall
- Thermo-mechanical response of the chamber wall
- Target survival during injection
- \blacktriangleright Driver propagation and focusing in the chamber

Operational Windows

Reference Direct and Indirect Target Designs

	Direct-Drive Target		Indirect-Drive Target	
	Energy (MJ)	% of yield	Energy (MJ)	% of yield
Driver Energy	1.3		3.3	
fotal Yield	154		458	
Neutrons	109	71 %	316	69 %
Fast Ions	18.1	12 %	8.43	1.8 %
Debris Ions	24.9	16 %	18.1	4.0 %
K-rays	2.14	1.4 %	115	25 %

time (ns)

Dry-wall chamber can handle direct-drive target emissions

- Photon and ion energy deposition falls by 1-2 orders of magnitude within 0.1-0.2 mm of surface.
- Beyond the first 0.1-0.2 mm of the surface. First wall experiences a much more uniform q" and quasi steady-state temperature (heat fluxes similar to MFE).

≻ Use an Armor

- ✓ Armor optimized to handle particle & heat flux.
- ✓ First wall is optimized for efficient heat removal.

Critical Issue is the lifetime of the armor:

- $\checkmark\,$ He retention and exfoliation
- ✓ Cyclic Fatigue
- \checkmark De-bounding of the armor

Aerosol Generation and Transport is the Key Issue for Thin-Liquid Wall Concepts

A renewable thin-liquid protection resolve several issues:

- ➢ It can handle a much higher heat fluxes compared to solid surfaces;
- ➢ It will eliminate damage to the armor/first wall due to high-energy ions.

A renewable thin-liquid protection, however, introduces its own critical issues:

- Fluid-dynamics aspects (establishment and maintenance of the film)
 - ✓ "Wetted wall:" Low-speed normal injection through a porous surface
 - ✓ "Forced film:" High-speed tangential injection along a solid surface
- Chamber clearing (recondensation of evaporated liquid)
 - \checkmark "Source term:" both vapor and liquid (e.g., explosive boiling) are ejected
 - ✓ Super-saturated state of the chamber leads to aerosol generation
 - ✓ Target injection and laser beam propagation lead to sever constraints on the acceptable amount and size of aerosol in the chamber.

Two Methods for Establishment of Thin-Liquid Walls Have Been Proposed

A Thin-Liquid Protected Film can be Established and Maintained

- Developed general non-dimensional charts for film stability
- Model predictions are closely matched with experimental data.

Radial injection scheme appear to be feasible and does not impose major constraints. Attractiveness of this concept depends on:

 \checkmark Details on the chamber and power plant design

 \checkmark Impact of the required pumping power on the recirculating power & overall economics

➢ For the forced-flow scheme, behavior of the film near major obstacles is a major concern

Most of Ablated Material Would Be in The Form of Aerosol

FLiBe aerosol and vapor mass history in a 6.5-m radius chamber (ablated thickness of 5.5 mm)

> Only homogeneous nucleation and growth from the vapor phase.

There Are Many Mechanism of Aerosol Generation in an IFE Chamber

- Homogeneous nucleation and growth from the vapor phase
 - ✓ Supersaturated vapor
 - \checkmark Ion seeded vapor
- Phase decomposition from the liquid phase
 - ✓ Thermally driven phase explosion
 - ✓ Pressure driven fracture
- Hydrodynamic droplet formation (May be critical in Thick-liquid Wall concepts")

Aerosol Generation and Transport is also the Key Issue for Thick-Liquid Wall Concepts

Studies of structural materials choices and limits

- ✓ If a 300 series SS is required as a near-term base line for the design, then Ti-modified 316SS (PCA) should be used. Chamber vessel would not be a life-time components.
- ✓ However, it was strongly recommended to consider alternate structural material candidates (ferritic steels and SiC/SiC composites) offering the possibility of higher operating temperature & performance. In this case, chamber vessel may be a life-time component.

- Aerosol concerns (similar to thin liquids) were highlighted.
 - ✓ Hydrodynamic droplet formation is a key issue. Flow conditioning and careful nozzle design are needed to control the hydrodynamic source.

Target injection Design Window Naturally Leads to Certain Research Directions

- Direct-drive targets (initial T=18K) are heated during their travel in the chamber by:
- Friction with the chamber gas (mainly through condensation heat flux) requiring
 - \checkmark Lower gas pressure
 - ✓ Slower injection velocity
- Radiation heat flux from hot first wall, requiring
 - ✓ Lower equilibrium temperature
 - ✓ Faster injection velocity
- Addition of a thin (~70µm) foam improves the thermal response considerably.

- Direct-drive target injection imposes the toughest constraint on chamber gas pressure.
- Impact of aerosol is unknown
- No constraint for indirect-drive targets

Studies of Ion Transport Modes Indicate Several Options are Feasible

Transport Mode	Ballistic Transport chamber holes ~ 5 cm radius most studied		Pinch Transport chamber holes ~ 0.5 cm radius higher risk, higher payoff	
Chamber Concept	<u>Vacuum-ballistic</u> vacuum	Neutralized-ballistic	Preformed channel ("assisted pinch") <i>laser + z-discharge</i>	Self-pinched only gas
<u>Dry-wall</u> ~6 meters to wall	Not considered now: requires ~500 or more beams	ARIES-IFE (2002) Possible option: but tighter constraints on vacuum and beam emittance	ARIES-IFE (2001) OPTION: uses 1-10 Torr 2 beams	ARIES-IFE (2001) OPTION: uses 1-100 mTorr ~2-100 beams
<u>Wetted-wall</u> ~ 4-5 meters to wall	HIBALL (1981) Not considered: needs ≤ 0.1 mTorr	OSIRIS-HIB (1992) ARIES-IFE (2002) Possible option: but tighter constraints on vacuum and beam emittance	ARIES-IFE (2001) OPTION: uses 1-10 Torr 2 beams	PROMETHEUS-H (1992) ARIES-IFE (2001) OPTION: uses 1-100 mTorr ~2-100 beams
<u>Thick-liquid wall</u> ~ 3 meters to wall	Not considered: needs ≤ 0.1 mTorr	HYLIFE II (1992-now) ARIES-IFE (2002) <u>Main-line approach</u> : uses pre-formed plasma and 1 mTorr for 3 m ~50-200 beams	ARIES-IFE (2002) OPTION: uses 1-10 Torr 2 beams	ARIES-IFE (2002) OPTION: uses 1-100 mTorr ~2-100 beams
		$nr^3 \le 10^{-9}$ (aerosol) or ~ 1 mTorr (gas)	$nr^3 \le 10^{-6}$ (aerosol) or ~ 1 Torr (gas)	$nr^3 \le 10^{-7}$ (aeroso $\sim 100 \text{ mTorr}$ (ga

Summary

Dry wall chambers

- Laser and direct-drive targets:
 - \checkmark Sever constraint on chamber gas pressure (from target injection).
 - \checkmark Wall can survive without any gas protection
 - \checkmark The major issue is the lifetime of the armor
- ➤ Laser or heavy-ions and indirect-drive targets:
 - ✓ Required protection gas pressure may be too high for laser and/or heavy-ion propagation
 - \checkmark Recycling of hohlraum material is a major issue.

Wetted-wall and Thick-liquid wall chambers

- ➢ Heavy-ion and indirect-drive targets:
 - \checkmark Requires assisted pinch propagation
 - \checkmark Aerosol generation and transport is a major issue.

Extra Slides

Details of Target Spectra Has A Strong Impact on the Thermal Response of the Wall

Energy Deposition (J/m²) in C and W Slabs (NRL 154MJ Direct Drive Target)

- Heat fluxes are much lower than predicted in previous studies:
 - ✓ A much smaller portion of target yield is in X-rays.
 - ✓ Time of flight of ions spread the temporal profile of energy flux on the wall over several µs.
- A cover gas may not be necessary for protecting the chamber wall

Photon and ion energy deposition falls by 1-2 orders of magnitude within 0.1 mm of surface.

Thermal Response of a W Flat Wall

- \blacktriangleright Temperature variation mainly in thin (0.1-0.2 mm) region.
- Margin for design optimization (a conservative limit for tungsten is to avoid reaching the melting point at 3,410°C).
- Similar margin for C slab.

IFE Armor Conditions are similar to those for MFE PFCs (ELM, VDE, Disruption)

	ITER Type -I	ITER VDE's	ITER	Typical IFE
	ELM's		Disruptions	Ope ration
				(direct-drive
				NRL target)
Energy	$<1 \text{ MJ/m}^2$	$\sim 50 \text{ MJ/m}^2$	$\sim 10 \text{ MJ/m}^2$	$\sim 0.1 \text{ MJ} / \text{m}^2$
Location	Surface near div.	surface	surface	bulk (~µm's)
	strike poin ts			
Time	100-1000 μs	~ 0.3 s	~ 1 ms	~ 1-3 µs
Max.	melting/	melting/	melting/	~ 1500-2000 °C
Temperature	sub lim ation	sub lim ation	sub limation	(for dry wall)
	points	points	points	
Frequency	Few Hz	~ 1 per 100	~ 1 per 10	~ 10 Hz
		cyc les	cyc les	
Base	200-1000 °C	~ 100°C	~ 100°C	~>500 °C
Temperature				

There is a considerable synergy between MFE plasma facing components and IFE chamber armor.

Design Windows for Direct-Drive Dry-wall Chambers

Thermal design window

- ✓ Detailed target emissions
- Transport in the chamber including time-of-flight spreading
- ✓ Transient thermal analysis of chamber wall
- \checkmark No gas is necessary

Target injection design window

- ✓ Heating of target by radiation and friction
- ✓ Constraints:
 - Limited rise in temperature
 - Acceptable stresses in DT ice

We Have Developed Design Widows for The Forced-Wall Concepts

Developed non-dimensional design widows for longitudinal spacing of injection/coolant/removal slots to maintain attached protective film;

Selected Results from ARIES-IFE Study : Wetted Wall Concepts

Selected Results from ARIES-IFE Study : Thick Liquid Wall Concepts