DEVELOPMENT OF A DRY WALL CONCEPT FOR LASER IFE CHAMBERS

Jake Blanchard

University of Wisconsin – Madison 1500 Engineering Dr. Madison, WI 53706 <u>blanchard@engr.wisc.edu</u>

TOFE 2004

The goal is to design a dry chamber wall for the HAPL project

The emphasis here is on the thermomechanical aspects of the design

Energy Partitioning and Photon Spectra for Example Direct Drive and Indirect Drive Targets

- Much higher X-ray energy for indirect drive target case (but with softer spectrum)
- More details on target spectra available on ARIES Web site: http://aries.ucsd.edu/ARIES/

Example IFE Ion Spectra

Characteristics of the Target Spectra Strongly Impact Chamber Wall Thermo-Mechanical Response

- Penetration range in armor dependent on ion energy level
 - Debris ions (~20-400 kev) deposit most of their energies within μ m's
 - Fast ions (~1-14 Mev) within 10's μm
- Important to consider time of flight effects (spreading energy deposition over time)
 - Photons in sub ns
 - Fast ions between ~0.2-0.8 µs
 - Debris ions between ~ $1-3 \ \mu s$
 - Much lower maximum temperature than for instantaneous energy deposition case

Energy Deposition as a Function of Penetration Depth for 154 MJ NRL DD Target

Ion Power Deposition as a Function of Time for 154 MJ NRL DD Target

Why are Stresses Important?

- Stresses contribute to:
 - Yielding
 - Fracture/fatigue
 - Creep/swelling
 - Ratcheting
 - Roughening
 - Spalling
- We must understand stresses to understand these phenomena

Temperature Histories - first cycle

7 meter chamberNo gas150 MJ target250 microns tungsten

Temperature Histories – 10 cycles

7 meter chamberNo gas150 MJ target250 microns tungsten

Temperature History at Surface of Steel

7 meter chamber No gas 150 MJ target 250 microns W

Stress History in Tungsten

7 meter chamberNo gas150 MJ target250 microns tungsten

Stress History in Steel Wall

7 meter chamberNo gas150 MJ target250 microns tungsten

Strain History

Stress-Strain Behavior at W Surface 10 Cycles

7 meter chamber No gas 150 MJ target

Fatigue Data for Stress-Relieved Tungsten

Scaling of Temperatures and Stresses

Scaling of Strains and Fatigue Initiation Life

Fracture Model

Fracture Mechanics Analysis Results

250 microns W7 m Chamber150 MJ Target

Validation Tests

- To validate modeling, several tests are under way
 - Ions at SNLA
 - X-Rays at LLNL (XAPPER) and SNLA (Z-Machine)
 - Lasers at UCSD
 - Infrared at ORNL
 - [IEC experiments to study He Effects]
- First three tests are shorter pulse times and higher intensity
- Infrared is longer pulse (excellent model for interface stresses)

Validation Tests

RHEPP – Renk – Oral Thu

Infrared Snead – Oral Thu

XAPPER - Latkowski - poster Wed

Laser - Najmabadi

Z Machine - Tanaka

IEC – Cipiti - poster Wed

Test Parameters

Туре	Energy (keV)	Maximum Fluence per Pulse (J/cm ²)	Depth of Energy Deposition (microns)	Flat Top Pulse Width (ns)
Ion Beam	750	7	1-10	100
Pulsed Z-Pinch (X-Rays)	0.8-1.2	3000	1-2	6
Single Shot Z-Pinch (X-Rays)	0.1-0.4	7	1-2	30-50 (FWHM)
Laser		0.7	0	8

Representative Temperature and Strain Comparisons

Temperature

Strain

End of Pulse

Fracture

•Tests are not conservative from fracture point of view

•Cracks will stop at a more shallow position

•Simulations should allow us to correlate growth rates and make conclusions relevant to chamber

Infrared Testing

End of 50th pulse Prior to next pulse 200 200 HAPL baseline HAPL baseline 150 Infrared heating Infrared heating 100 100 Stress (MPa) Stress (MPa) Armor interface Armor interface 0 50 0 -100 -50 -200 -100 0.5 0 1.5 2 2.5 3 3.5 0.5 2.5 3 1 0 1 1.5 2 3.5 depth (mm) depth (mm)

Cooled Samples

Cooled Samples (continued)

X - Distance from Centerline (mm)

Conclusions

- The primary design for the HAPL chamber wall is tungsten-coated steel
- Modeling indicates surface cracking is expected, but that arrest is likely
- Testing is underway to investigate this
- Modeling indicates tests are good models for surface phenomena, but not for fracture
- Modeling will allow test data to support lifetime prediction for the HAPL wall

