Diode-pumped solid-state laser driver for Inertial Fusion Energy

Camille Bibeau

National Ignition Facility Directorate Lawrence Livermore National Laboratory Livermore, California 94550

Topics on Fusion Energy Madison, Wisconsin September 14, 2004

Outline

- Project Overview
 - Mercury Laser performance goals
 - International 100 J class systems
- Laser architecture
 - Technology retrospective
 - Design considerations
 - Projected performance

System performance

- Pockels cell
- Diode arrays
- Crystalline gain media
- Gas cooled amplifiers
- Laser operations
- Upcoming activities
 - Frequency conversion
 - Wavefront control
 - Bandwidth

The Mercury Laser Project is currently the largest ytterbium-based system for fusion energy applications

Highlights of high energy Yb:S-FAP lasers:

- 2.2 J, 25 Hz; C. Marshall et al., 1996
- 47 mJ, 2 Hz; C. Bibeau et al., 1996
- 65 mJ, 10 Hz; J. Pierce et al., 1997
- 24 mJ, 50 Hz; H. Ishikawa et al., 2003

Our challenge was to build the next system with:

- 9x larger Yb:S-FAP material (4 x 6 x .75 cm)
- 35x number of diodes (6624 diodes)
- 4x reduction on diode cost (\$5/W)
- 45x energy out per pulse (100 Joules in 3-10 ns)

All within the boundaries of Inertial Fusion Energy requirements

What do IFE scale laser systems look like?

National Ignition Facility LLNL, United States

Laser Megajoule Facility CEA, France

Status:

Status:

The U.S. High Average Power Laser Program is a multi-facility effort to develop laser driven inertial fusion energy

Target

factory

Target Injection GA, LANL

Target Design and Fabrication NRL, LLNL, GA, LANL, SCHAFER

Laser Drivers LLNL: DPSSL (Mercury) NRL: KrF (Electra)

Chambers SNL, LLNL, WISC, UCSD, ORNL, UCLA

Final Optics LLNL, LANL, UCSD

Many different architectural approaches are being considered for rep-rated 100J systems

Polaris - Germany Dr. Joachim Hein Water cooled, longitudinal pumped Yb:Flurophosphate disk HALNA - Japan Dr. Yasukazu Izawa Water cooled, side pumped Nd:Phospate slab Lucia - France Dr. Jean-Christophe Chanteloup Water cooled, longitudinal pumped Yb:YAG disk

Summary of performance goals

Project	Polaris	HALNA	Lucia	Mercury
Project	Germany	Japan	France	United States
Application	High energy radiation source	IFE	Laser matter interaction	IFE and HE/AP uses
Gain Media	Yb:FP glass	Nd:phosphate glass	Yb:YAG and FP glass option	Yb:S-FAP
Wavelength	1.050 um	1.053 um	1.030 um	1.047 um
Energy	150 J	100 J	100 J	100 J
Rep-rate	0.1 Hz	10 Hz	10 Hz	10 Hz
Average Power	15 W	1 kW	1 kW	1 kW
Pulse length	150 fs	10 ns	1-10 ns	3-10 ns
Peak Power	1 PW	10 GW	10 GW	10 GW
Output beam size	900 cm²	12 cm ²	10 cm²	15 cm²
Beam Quality	3 xdl	5 xdl	1.1 xdl	5 xdl
Additional capabilities	-	-	• 1 ps option	 2ω conversion 150 GHz smoothing 10 ps option

The Mercury Laser employs four key technologies

Angular Multiplexing Closely-spaced Architecture

Pump Diode Arrays

Yb:S-FAP Amplifier Slabs

Helium Gas Cooling

1996-2004 Technology Retrospective **Diode Arrays Yb:S-FAP** 6.5 cm LLNL Commercial 3 cm ti AM titt an Y6: 5- FAP A26-106 27 mm Dia E411-50 **Gas-cooled Amplifier** 8 channel recirculatio 2 channel YCOB **Pockels Cell** 0.5 cm 8 cm 0.5 x 2 cm 4 x 6 cm ևստուհաստեսաստեսաստեսաստեսաստես

Nonlinear propagation physics were considered in designing the optical layout of Mercury reliability

- Relay the location of near-field planes Design layout to minimize growth
- Filter fast growing spatial frequencies Minimize source terms through optical specifications

Solution

The amplifier spacing studies show spatial frequencies convert from phase to amplitude at different rates

When propagating, the highest frequency phase aberrations are the first to appear as amplitude modulation

Optical specifications can drive:

Two architectures were studied to investigate minimizing intensity modulation

Designing a robust system requires a close interplay between laser architecture and optical specifications

The Mercury laser system positions lenses and amplifiers near relay planes

Additional laser modeling was performed to address all aspects of architecture

A full size Pockels cell for parasitic beam control was installed in the system

Pockels cell performance:

- Wavefront distortion: 0.15λ
- Average contrast: 200:1
- Rise time: 11 ns

0.2 / -0.2

Each amplifier is pumped by 320 kW of peak diode power

Diode tile attributes	Performance	
Power	120 W/ bar	
Reliability	10 ⁸ shots at 100 W/bar	
Power droop	4.3%	
over 1 msec		
Linewidth	2.3 nm	
Integrated linewidth	4.1 nm	
over 1 msec		
Divergence	15 x 140 mrad	
Efficiency	45%	

		HIGH CHIMA INT			
		WINCTED PROFILES		ULIMPIC III	
	Market, Printer				WO ACCUMULT
		International Advancement	A HEARING PE		
NUMBER OF STREET, STRE		HTTP: CONTRACT			
erniet in 19 with		LIN MARRIE MARRIEL DU LA		and the second street,	

The fabrication of Yb:S-FAP amplifier slabs involves several precision process steps

Coating

Bonding

Magneto-rheological finishing (MRF) of the amplifier slabs is used for improving wavefront quality and optical lifetime

Surface wavefront

PV: 0.952 um, RMS: 0.160 um

Transmitted wavefront

After MRF

PV: 0.0682 um, RMS: 0.0140 um

PV: 0.0755 um, RMS: 0.00695 um

Highest quality conventional polish Damage probability of SFAP 1 Coated Yb:S-FAP Uncoated Yb:S-FAP Cumulative probability of damage polish MRF polish hinting 100 µm MRF polished part 0.0001 ^{0 40 50 60 70 80 5} Fluence (J/cm²) at 10 ns 0 10 20 30 90 100 110 120 hinhinh 100 µm

*Menapace et. al "Combined Advanced Finishing and UV-Laser Conditioning for Producing UV-Damage-Resistant Fused Silica Optics", SPIE **4679**, 56-67, 2002

MRF polishing on fused silica reduces subsurface damage*

Face cooling with helium gas offers low scattering losses and thermal distortions

Both amplifiers have been deployed with helium gas cooling

We have extracted up to 34 J single shot and 114 W at 5 Hz with continuous operation for an hour

Mercury Team

Kathy Allen Kathy Alviso Paul Armstrong Monique Banuelos Andy Bayramian Ray Beach Rob Campbell Manny Carrillo Chris Ebbers Barry Freitas Keith Kanz Bob Kent Tony Ladran Dolores Lambert Rod Lanning Zhi Liao Joe Menapace Bill Molander Noel Petersen Greg Rogowski Kathleen Schaffers Ralph Speck Chris Stolz Steve Sutton John Tassano Steve Telford Peter Thelin Everett Utterback

Collaborators

Laboratory for Laser Energetics CEA (Bordeaux) Northrop-Grumman Onyx Optics Schott Glass Technologies Spectra Physics Quality Thin Films Zygo CREOL Coherent Directed Energy

A heat spreader design will be used for cooling the YCOB crystal for 2w frequency conversion at 10 Hz

YCOB temperature acceptance is 22 °C

1w drive energy

Identified Deformable Mirror suppliers:

- LLNL/LLE design deformable mirrors used on NIF
- Zyanetics deformable mirrors used on the HELSTF laser (high average power 30kW)
- Russian Ring deformable mirror used on LULI(France) (high peak power (1.4 GW/cm²))

Mercury expected single pass wavefront distortion:

Static distortion stackup: 19 optics @ 1/10 = 1.9 waves 14 S-FAP@ 1/5 = 2.8 waves
Thermal distortion: 14 S-FAP@ ~1/8 = 2.0 waves > Dynamic distortions: ~ 2.0 waves Total wavefront distortion: = 8.7 waves

Mercury additional optics requirements:

- Average power handling: 600 W
- Peak power handling: 0.64 GW/cm² (3 ns pulse)

