

# **RECENT PROGRESS OF** LOW-ASPECT RATIO EXPERIMENTS

R.J. Fonck University of Wisconsin-Madison

with Contributions from: M. Peng. M. Ono, R. Bell: ORNL/PPPL - NSTX T. Jarboe, R. Raman: U. Wash. - HIT, NSTX R. Majeski: PPPL - CDX-U A. Sykes, B. Lloyd, H. R. Wilson: UKAEA - MAST

presented to the

16th ANS Topical Meeting on the Technology of Fusion Energy (TOFE) Madison, Wisconsin, September 14-16, 2004

# **Outline**

Properties of Low Aspect Ratio Plasmas

Plasma Performance in ST's

**Issues in Technology and Techniques** 

Future Directions (?)

### "Spherical Torus" Extends Tokamak to Extreme Toroidicity

- Motivated by potential for increased  $\beta$  (*Peng & Strickler*, 1980s)  $\beta_{max} \ (= 2\mu_0 \langle p \rangle / B_T^2) = C \cdot I_p / a B_T \propto C \cdot \kappa / Aq$ 
  - $B_{T}$ : toroidal magnetic field on axis;
  - $\langle p \rangle$ : average plasma pressure;
  - $I_p$ : plasma current;
  - a: minor radius;
  - $\kappa$ : elongation of cross-section;
  - A: aspect ratio (= R/a);
  - q: MHD "safety factor" (> 2)
  - C: Constant ~3%·m·T/MA (*Troyon, Sykes - early 1980s*)
- Confirmed by experiments
  - $\beta_{\max} \approx 40\% \ (\bar{S}TAR\bar{T} UK, 1990s)$



- Two Goals for ST Research:
  - Explore long-term fusion potential of ST
  - Advance tokamak physics to optimize future expts.

### **ST Research Can Address Extended Parameter Space in Support of Fusion Energy Science Goal**

| Plasma Science of Extended<br>Parameter Space                                                          | ⇒ | Goal: Optimize Fusion DEMO<br>& Development Steps              |  |  |
|--------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------|--|--|
| <ol> <li>Stable high β<sub>T</sub>, β<sub>0</sub> &amp;</li> <li>bootstrap current fraction</li> </ol> | ⇒ | Lowered magnetic field and device costs                        |  |  |
| 2) Effective wave-energetic particle-plasma interactions                                               | ⇒ | Efficient fusion $\alpha$ particle, neutral beam, & RF heating |  |  |
| 3) Reduced turbulence                                                                                  | ⇒ | Smaller unit size for sustained fusion burn                    |  |  |
| 4) Dispersed plasma fluxes                                                                             | ⇒ | Survivable plasma facing components                            |  |  |
| 5) Solenoid-free startup &<br>sustainment                                                              | ⇒ | Simplified smaller design, reduced operating cost              |  |  |
| 6) Attractive sustained<br>burning plasma properties                                                   | ⇒ | Steady state fusion power source                               |  |  |

### **Spherical Torus Research Is Growing Worldwide**



## NSTX Exceeded Troyon Scaling at Higher $I_p/aB_T$ Indicating Better Field and Size Utilization at Low A



• Obtained high beta values:

$$\beta_{\text{T}}$$
 = 2 $\mu_0 \langle p \rangle$  /  $B_{\text{T0}}{}^2 \leq 38\%$ 

$$\beta_{N}$$
 =  $\beta_{T}$  / ( $I_{p}/aB_{T0}$ )  $\leq 6.4$ 

$$\left<\beta\right>$$
 = 2  $\mu_0\!\left$  /  $\left$   $\leq$  20%

- To produce and study full noninductive sustained plasmas
  - Relevant to **DEMO**
- Nearly sustained plasmas with neutral beam and bootstrap current
  - Relevant to **ITER** hybrid mode
  - Nearly basis for neutral beam sustained ST Component Test Facility (CTF) at Q~2

### With NBI, Tokamak Trends Reproduced



• Total confinement, including fast ions

• TRANSP analysis for thermal confinement

# **Confinement & Transport**

MAST data significantly extend confinement databases e.g. should give greater confidence in  $\epsilon$  and  $\beta$  dependencies

Dataset improved e.g. spread in  $\varepsilon$  mainly determined by plasmas with conventional D-shaped cross-section  $\Rightarrow \tau_{E}^{MAST} \sim \tau_{E}^{IPB98y2}$  but MAST data support somewhat stronger  $\varepsilon$  dependence ( $\tau_{E} \propto \varepsilon^{0.8}$ ) than IPB98y2 scaling [Valovic IAEA 2004]





MAST data also exert strong leverage on two-term models of confinement:

 $W_{ped} \propto \epsilon^{-2.13\pm0.28}$  [Cordey et al NF 2003]





# In NBI H-Mode Plasmas, Ion Energy and Particle Diffusivities are Very Low, But not the Electrons

| Core Transport<br>Physics | NSTX Results                                                                                                                    | € mHD event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermal<br>Conductivity   | • $\chi_{ion} \sim \chi_{neoclassical}$<br>• $\chi_{elec} >> \chi_{ion}$                                                        | Ne <sup>8,9+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Impurity<br>Diffusivity   | • D <sub>imp</sub> ~ D <sub>neoclassical</sub>                                                                                  | Щ 129<br>Ф 109<br>Сл. 60<br>Сл. 60 |
| Micro-<br>instability     | <ul> <li>Driven by T and n<br/>gradients</li> </ul>                                                                             | Ne puff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| turbulence<br>theory      | <ul> <li>k<sub>θ</sub>ρ<sub>i</sub> &lt; 1 (ion gyro-<br/>scale) stable or<br/>suppressed by V<sub>φ</sub><br/>shear</li> </ul> | $14 \times 10^{5} \text{ s}^{-1}$ $12 \qquad \gamma_{0}^{\text{max}}  k_{\theta} p_{1} \gg 1$ $10 \qquad 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | <ul> <li>k<sub>θ</sub>ρ<sub>i</sub> &gt;&gt; 1 (electron<br/>gyro-scale) strongly<br/>unstable</li> </ul>                       | $\begin{bmatrix} 6 \\ 4 \\ 2 \\ 0 \end{bmatrix} \xrightarrow{\gamma_{\text{E}}}  k_{\theta}\rho_{i}  < 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Cadarache, JHU, PPPL, U. Maryland

\_\_\_\_

### **H-mode Power Threshold**



Low A data:

- clearly favour  $P_{th} \sim S$  rather than  $P_{th} \sim R^2$
- favour dependence on  $|B_{out}|$ rather than  $B_t(0)$

```
|B_{out}|^2 = B_t^2 + B_p^2
```

The (non-linear) aspect ratio dependence is not yet well-determined - postulated by Takizuka et al that it may take a form related to fraction of untrapped particles



[Takizuka et al PPCF 2004]



# **Stability**





By avoidance of NTMs  $\beta_N > 5$ ,  $(\beta_N > 5I_i)$ has been achieved in MAST  $\Rightarrow$  approaching ideal no-wall beta limit.

**KINX** calculations

- unstable
  - stable f<sub>BS</sub> ~ 4

~ 40%, 
$$W_{fast}$$
 ~ 15 - 20%

Sawtooth triggered NTMs have been observed in MAST - island evolution confirms strong role of field curvature stabilisation (Glasser) term at low A

Taking the Sauter NTM model, benchmarked against MAST it appears that the STPP may be stable to NTMs



## **RWM Sensors Detect Mode in High** $\beta_T$ **Plasma**





## TAE's, f.b.'s, and CAE/GAE's Can Interact to Expel Energetic Particles

 $(I_p = 0.65 \text{ MA}, P_b = 3.6 \text{ MW}, \beta_{T0} = 10\%)$ 

Synchronous sudden activities of

- Edge ionization rises
- D-D neutron drops
- Fish-bone modes rises
- TAE mode crashes

PPPL

- Separately, synchronous drops of f.b. and CAE modes
- Only when  $\beta_{T0} \leq$  10% and  $I_p \leq$  700 kA, relevant to moderate  $\beta$  devices
- Relevant to burning plasmas

FPA, 11/20-22/03

### Spherical Torus Center-Stack is a Challenge

#### NSTX: Now Operating With a New Center Bundle for Toroidal Field Coil

- Joint failure in February '03
- New, stronger bundle constructed after redesign, modeling and review
- Continuous monitoring installed; OK at 0.45 T for  $\sim 1200$  shots







### **PEGASUS Toroidal Field Upper Joint Assembly**

#### Bare TF Assembly



#### Fully Assembled TF Joint



- Cylindrical spring reactor with wedges compresses joints
- Silver mesh used on contact area to ensure high local pressure and low net joint resistance

# **Divertor Electrical Biasing**







G Counsell et al



## CDX-U Is Testing Innovative Lithium Plasma Facing Component Effects

- First successful test of toroidal liquid lithium tray limiter
- Dramatic reduction in plasma edge fuel recycling, lowering impurity influx and loop voltage
- · NSTX tests of lithium pellets and lithium wall coating in 2004



# CHI Has Generated Significant Toroidal Current Without Transformer Induction



Goal to produce reconnection of current onto closed flux surfaces
 – Demonstrated on HIT-II experiment at U. of Washington, Seattle



#### Noninductive Startup in PEGASUS with Simple Plasma Gun(?)

- Single gun installed for near-toroidal injection in divertor reigion
- Current amplification up to 17 so far
- Clear reconnection and state change above a threshold in power/helicity(?)
- No optimization of gun or geometry yet; no info on magnetic surfaces





## Long-Pulse H-Mode Plasmas Made Encouraging Progress in toward Future ST Possibilities



Understanding long-pulse, high performance plasmas is a major research area.

JKS2004-Aug25-27/04



# Summary: Exciting Times in ST-land!

- Properties of low-A plasmas (high  $\beta_t$ , low  $B_{TF}$ , strong shaping, etc.) strongly influence plasma behavior
- The ST may offer cost-effective steps to attractive fusion concepts
  - Rapid development due to strong overlap with tokamak physics
- ST research is expanding the knowledge base for conventional tokamaks
  - Expansion of tokamak databases; extension to extremes of parameters
  - Contribute to burning plasma optimization in future BP experiment
- The present generation of PoP-class ST's NSTX and MAST are exhibiting attractive confinement and stability properties
  - $\beta_t \sim 40\%$ ,  $\beta_N > 5$ , near ideal no-wall limit
  - $\chi_i \approx \chi_{i-neo}$ , reduced  $\chi_e$  (MAST),  $\tau_E \sim \tau_E$ (IPB98(y,2))
- Range of smaller CE experiments addressing specific issues in support of ST program
- Critical science and technical challenges looming
  - Noninductive startup and sustainment New CD techniques needed
  - Shaping optimization for stability
  - RWM control
  - Current and pressure profile control
  - Particle and wall control; exhaust; divertor; edge
  - MHD and fast particles
  - Innovative centerstack, divertor designs
  - *etc.*

# **Properties of Low A Plasmas**

Improved stability + good confinement  $\Rightarrow$  high beta (  $\beta \sim 40\%$  in START, NSTX)

Increased decoupling of j(r) & q(r)

High shaping  $(\kappa, \delta)$   $\Rightarrow$  high  $I_p$  capability High performance at low B

⇒ super-Alfvenic
 ions
 Fast particle driven
 instabilities



 $B_p(R+a) \sim B_t$   $\Rightarrow$  large field line tilt & low parallel power density in the outboard SOL

Strong paramagnetism

 $B_t(R-a) / B_t(R+a) \sim 5$   $\Rightarrow$  enhanced trapping Impact on transport, resistivity

Low moment of inertia  $\Rightarrow$  high flow velocity (V<sub> $\phi$ </sub> ~ V<sub>i</sub><sup>th</sup>)

Large inherent ExB flow shear ⇒ suppression of micro-instabilities (ITG)

# **Pedestal Scaling**



MAST pedestal energy calculated from full electron pressure profile.

Without MAST:
 
$$W_{ped,fit} \propto$$
 $I^{1.4} R^{1.37} P^{0.50} n^{-0.15} B^{0.32} \kappa_a^{1.21} m^{0.2} (q_{95} / q_{cyl})^{1.6}$ 

 With MAST:
  $W_{ped,fit} \propto \left(\frac{a}{R}\right)^{-2.13}$ 
 $I^{1.58} R^{1.08} P^{0.42} n^{-0.08} B^{0.06} \kappa_a^{1.81} m^{0.2} (q_{95} / q_{cyl})^{2.09}$ 

 Mith MAST:
  $W_{ped,fit} \propto \left(\frac{a}{R}\right)^{-2.13}$ 
 $I^{1.58} R^{1.08} P^{0.42} n^{-0.08} B^{0.06} \kappa_a^{1.81} m^{0.2} (q_{95} / q_{cyl})^{2.09}$ 

 M. Valovic et al
 **UKAEA** Fusion

in Eur

# **Evidence for Current Drive by HHFW with** $k_T \approx \pm 7m^{-1}$ in Co and Counter CD Phasing



- Phase velocity matches 2keV electrons
- 150 kA driven current from simple circuit analysis
- Modeling codes calculate 90 230 kA driven by waves

Ryan (ORNL)

### **Densities May Exceed the Greenwald Limit**

- NSTX: with Gas Fueling + NBI Heating
  - Observe little degradation in confinement at high density
  - Regression to dataset shows
    - Incremental efficiency of deuterium gas is low
    - $dN_e/dN_{D,gas} = 5 10 \%$
    - NBI fueling is very efficient

• 
$$dN_e/dN_{D,NBI} = 95 - 105 \%$$





- Pegasus: with Gas Fueling + OH Heating
  - No clear limit to date

## Tools for Long-Pulse, High Performance Plasmas Are Identified

- Enhanced shaping improves ballooning stability
- Mode, rotation, and error field control ensures high beta
- NBI and bootstrap sustain most of current
- HHFW heating contributes to bootstrap
- EBW provides off-axis current & stabilizes tearing modes
- Particle and wall control
   maintains proper density





CompX, MIT, PPPL, ORNL, UCSD

### Future ST Steps Are Estimated to Require Moderate Sizes to Make Key Advances toward DEMO



| Device                     | N          | STX                     | NSST                     |                      | CTF                                      |              | DEMO                                  |
|----------------------------|------------|-------------------------|--------------------------|----------------------|------------------------------------------|--------------|---------------------------------------|
| Mission                    | Proof of   | f Principle             | Performance<br>Extension |                      | Energy Development,<br>Component Testing |              | Practicality of Fusion<br>Electricity |
| R (m)                      | 0          | .85                     | ~1.5                     |                      | ~1.2                                     |              | ~3                                    |
| a (m)                      | 0          | 0.65                    |                          | ~0.9                 |                                          | 0.8          | ~2                                    |
| κ, δ                       | 2.5        | 5, 0.8                  | ~2.7, ~0.7               |                      | ~3, ~0.5                                 |              | ~3.2, ~0.5                            |
| I <sub>p</sub> (MA)        | 1.5        | 1                       | ~5                       | ~10                  | ~10                                      | ~12          | ~25                                   |
| Β <sub>T</sub> (T)         | 0.6        | 0.3                     | ~1.1                     | ~2.6                 | ~1.7                                     | ~2.1         | ~1.8                                  |
| Pulse (s)                  | 1          | 5                       | ~50                      | ~5                   | Steady state                             |              | Steady state                          |
| P <sub>fusion</sub> (MW)   |            |                         | ~10                      | ~50                  | ~77                                      | ~300         | ~3100                                 |
| $W_L$ (MW/m <sup>2</sup> ) | _          |                         | 2                        |                      | ~                                        | ~4           | ~4                                    |
| Duty factor (%)            | ~(         | ~0.05                   |                          | ).05                 | ~15                                      | 30           | 60                                    |
| TFC; Solenoid              | Multi-turr | Multi-turn; Solenoid Mu |                          | Multi-turn; Solenoid |                                          | n; No-solen. | Single-turn; No-solen.                |

### **ELMs**



ELMs associated with large radial effluxes at outboard side ( $<v_r > ~ 0.75$  kms<sup>-</sup> RP observes large j<sub>sat</sub> out to ~15 cm



### Control of ELMs Critical to Optimizing $\beta$



# **Neoclassical tearing modes (NTMs)**

Sawtooth triggered NTMs (m/n = 3/2, m/n = 2/1) observed in MAST



3/2 NTM reduces confinement by typically ~ 10%; approximate agreement with Chang & Callen belt model 2/1 NTM can trigger  $H \rightarrow L$  transition followed by mode locking and disruption



## A Broad Spectra of Energetic Particle Driven Modes Are Seen on NSTX



### High Rotation & Large Gradients in T<sub>i</sub>, v<sub>i</sub>



### High v<sub>b</sub>/v<sub>A</sub> Affects Equilibrium & Stability

• Experiment: kinks do not grow but saturate





 $\begin{array}{l} n_{e}(\psi,R) \; (\text{MHD model} & \text{Theory: with rotation, growth rate reduced by factor 2 - 3 (M3D)} \\ \text{with centrifugal effects)} \\ n_{e}(\psi) \; (\text{assuming} \\ \text{density a flux function}) & M_{A} = 0.3 \end{array}$ 



- Density shows in-out asymmetry
  - Effect of high Mach number of driven flow

# **Exhaust**

STs - small area of inboard divertor targets may lead to high power densities

But favourable divertor target power distribution:

- large ratio of outboard to inboard separatrix area ( ~ x4) in low A plasmas
- equal up-down power distribution in DND



High  $B_p/B_t$  in outboard SOL leads to low parallel power densities:  $\Rightarrow$  local target protrusions intercept a small fraction of power efflux so ST is less sensitive to tile mis-alignment for example



Increases practical feasibility of advanced divertor schemes such as the cascading pebble divertor



# Non inductive current initiation needed for STs

- The favorable properties of the ST arise from its very small aspect ratio, which leaves very restricted space for a central solenoid and related neutron shielding
- Solenoid-free plasma start-up is essential for the viability of the ST concept
- Elimination of the central solenoid also simplifies the engineering design of tokamaks (e.g., AIRES AT & RS)
- CHI is capable of both plasma start-up and edge current in a pre-established diverted discharge



Expect reconnection processes to redistribute edge current to the interior, forming closed surfaces

# **NSST Mission Elements**

### • ST Physics at Fusion Parameters

- Non-Ohmic Start-up an Non-inductive Sustainment
- Plasma Confinement and Stability
- Power and particle handling
- Alpha physics at high beta
- Advanced ST Physics



NSS

- Provide physics basis for an ST-based compact CTF
- Develop Adv. ST Physics scenarios for CTF, DEMO, and Power Plant
- Contribute to General plasma / astrophysics/ fusion science
  - high  $\beta$  waves/turbulences, energetic particles, magnetic reconnections

# Obtained 390 kA with current multiplication of 14 in 330 ms long discharges (steady-state CHI)





- Evidence for good *n*=1 oscillations deemed necessary for flux closure
- ESC and EFIT reconstructions consistent with but not conclusive of flux closure
- Evidence for higher temperature from SXR's



Soft x-ray profiles (E > 100 eV) D. Stutman (Johns Hopkins)

SS CHI: Voltage is applied for as long as the current needs to be sustained 7

# Variety of Kinetic Instabilities Occurs with NBI



- Some modes correlated with fast ion losses
  - TAE
  - "fishbones"
- "Fishbones" are different at low aspect-ratio
  - Possibly driven by bounceresonance
- All modes interact

# Developing Capability for Active Control of Resistive Wall Modes

- 6 external correction coils being installed during this run
  - Operate as opposing pairs driven by three switching amplifiers



PF5 coils (main vertical field)

 Planning to process sensor data in real-time through plasma control system for feedback control



## PEGASUS: ST q-profile has low central shear

#### Tangential PHC SXR image



- 2D soft x-ray image constrains q-profile
  - Constant-intensity surfaces determined
  - Mapped into flux space
  - G-S equilibrium with SXR constraints
- Measured q-profile  $\Rightarrow$  low central shear





### Solenoid Free Start-Up via Coaxial Helicity Injection & Outer Poloidal Field Coil Scenarios to be Tested



# ST Plasma Elongates Naturally, Needs Less TF & PF Coil Currents, Increases $I_p/aB_T$ , and Increases $\beta_{Tmax}$



- Naturally increased  $\kappa \sim 2$ ;  $I_{TF} < I_p$ ,  $I_{PF} < I_p \Rightarrow$  higher  $I_p$ ; lower device cost
- Increased  $I_p/aB_T \sim 7 \text{ MA/m} \cdot T \implies \beta_{Tmax} \sim 20\%$ , if  $\beta_N \sim 3$
- Increased  $I_p q_{edge} / aB_T \sim 20 \text{ MA/m} \cdot T \implies \text{improved confinement?}$

# Ideal no-wall beta limit approached

By avoidance of NTMs  $\beta_N > 5$ ,  $(\beta_N > 5I_j)$  has been achieved, approaching the ideal no-wall beta limit





### High $\beta_t$ and Improved Confinement Achieved

- Long H-modes with High Elongation and Triangularity Provides Route to High  $\beta$
- Reducing error fields & H-modes improved performance in 2002
- Improved vertical position control & earlier H-modes opened operating window this year
  - Propagation latency in digital control system reduced to  $\sim 700 \mu s$
  - Lower internal inductance in H-mode allows higher elongation
  - Capability for higher  $\kappa$ ,  $\delta$  allowed higher  $I_P/aB_T$

