

Surface Morphology of He⁺-Implanted Nano-Grain W Coatings for Fusion **Reactor First-Wall Materials and Divertor Plates** S. J. Zenobia^{*} & G. L. Kulcinski **University of Wisconsin – Madison, USA**

Motivation

"How can a 100-million-degree burning plasma be interfaced to its room temperature surroundings?" - 2005 Scientific Challenges, Opportunities and Priorities for the U.S. Fusion Energy Sciences Program

- Current designs of the dome & vertical targets of the ITER divertor use tungsten (W)
- These components experience high fluxes of energetic He ash

• Inertial Confinement Fusion concepts are considering W for the first wall armor

Experimental Setup

• Helium ions are generated using a helicon ion source

• A large negative potential difference (-30 kV) extracts He ions and accelerates them to ~30 keV

Consequently, these ions energetically heat and bombard the W, implanting the specimen with He

Plasma Ion Source

		Resu	lts		
C • 8	haracteristics 0-90% dense if the second se	s of nano-grain •~240 nm ion Test Matri	n tungsten (Naverage grain average grain ing implantation ix using 30 ke	GW) n size ion V He ⁺	 Subsurface penetration depth of visibly porous region increases with increased fluence, reaching a maximum of approximately 730 nm Helium Ret
	$^{3}\mathrm{He}^{+}$	$^{3}\mathrm{He}^{+}$	³ He ⁺	$^{4}\mathrm{He}^{+}$	1.E ~ E
φ	10 ²¹ m ⁻²	10 ²² m ⁻²	$10^{23} \mathrm{m}^{-2}$	10 ²⁴ m ⁻²	J.E e. E.E
Τ	1423 <u>+</u> 50 K	1323 <u>+</u> 50 K	1273 <u>+</u> 50 K	1273 <u>+</u> 50 K	. Inenc
Surface Morphology Change (SEM & FIB)					jued ned ned
1423 400 nm 400 nm - ne form - No obs and	K, ³ He ⁺ 132 132 132 132 132 132 132 132	3 K, ³ He ⁺ 12 3 K, ³ He ⁺ 12 400 400 400 400 400 400 400 400 400 1.E+01 1.E+01 1.E+01 1.E+01 1.E-02 1.E-03 1.E-04 4.E-04 1.E+21	73 K, ³ He ⁺ The second sec	1273 K, ⁴ He ⁺	• Ret to be • The thresh in NGW an • Sub-surface range of • NRA sho FGW & NGV • The surface

Funded by the DOE through the HAPL Program; Presented PFMC-12, May 11-14, 2009

etention – Nuclear Reaction Analysis (NRA)

tention of implanted He in NGW appears e similar to that of fine-grain (FGW) and polycrystalline (PCW) tungsten

Conclusions

old for pore formation lies between $10^{21} - 10^{22}$ m⁻² nd becomes extensive at 10²³ m⁻², increased from standard PCW by about a factor of 10 ce pores penetrate much deeper than the calculated 30 keV He⁺ (~80 nm), up to 730 nm in NGW ows the retention characteristics of standard PCW, W are very similar at fluences above $\sim 10^{21}$ He⁺/m² over the examined temperature range e morphology response of FGW & NGW does not o be better than standard PCW at intermediate n^{-2}) and high (10²³ m⁻²) implanted He⁺ doses