

Ion Implantation Effects on CVD SiC and Carbon-Carbon Velvet Fusion Technology Institute, University of Wisconsin-Madison S.J. Zenobia, G.L. Kulcinski, R.F. Radel, R.P. Ashley, D.R. Boris

Materials Irradiation Experiments and the **UW-Madison IEC Device**

Summary of Presented Experiments

- SRIM calculations have been used to estimate the range of He⁺ in CVD silicon carbide (SiC) as well as the range of He⁺ and D⁺ in carbon-carbon velvet (CCV) and tungsten coated carbon-carbon velvet (CCV/W). **CVD SiC samples (supplied by ORNL) were irradiated in the UW IEC device**
- to 1x10¹⁸ and 1x10¹⁹ He⁺/cm² at 850 and 950 °C.
- A partially masked SiC sample was irradiated to ~1.5x10¹⁹ He⁺/cm² at 950 °C
- CCV and CCV/W samples were irradiated to 1x10¹⁹ He⁺/cm² at 1150°C and a CCV sample was irradiated to 1x10¹⁹ D⁺/cm²
- SEM analysis has been performed to evaluate the surface damage on the CVD

He⁺ Irradiation of CVD SiC

Irradiated (a) 850 °C

<u>1x10¹⁸ He⁺/cm²</u>

Once again excessive flaking is evident on both specimens, though the level of pore formation is not as high as the 1x10¹⁹ He⁺/cm² and 950 °C specimen. These flakes appear to be approximately several microns in thickness.

Irradiated Zone	and the	The strength of the	a de la composition de la comp
$\sim 1.5 \times 10^{19} \text{ He}^{+}/\text{cm}^{2}$			
			1.3
	A Real	and the second second	a survey of
		1. 1. 1. 1	S. A. J. M.
a state of the state			
			a the second the
20 1170	States -		A. L.
20 μm		M. C. S. W.	N N ST
a second production of the	Roll State In-	A Real Second Cold	19 - The P. S.

Lack of damage in the unirradiated zone confirms that the damage is due to helium ion fluence. The particles in the unirradiated zone are most likely a post-irradiation artifact.

SiC Conclusions

- and fluences (1x10¹⁸ He⁺/cm² to 1x10¹⁹ He⁺/cm²)
- of the temperature at which the sample is irradiated
- However, ion fluence NOT temperature, causes these surface morphology changes

The authors gratefully acknowledge the financial support of the HAPL program at the Naval Research Laboratory.

Significant changes in SiC surface morphology occur at both 850 and 950 °C

At constant He⁺ fluence, the characteristic damage of the sample is a function

Tungsten-coated carbon-carbon velvet (CCV/W) irradiated with He⁺ to a fluence of 1x10¹⁹ ions/cm² at ~1150 °C

effect.

- effect

He⁺ and D⁺ Irradiation of CCV and CCV/W

Unirradiated Carbon-Carbon Velvet Specimen

CCV and CCV/W Conclusions

Both He⁺ and D⁺ irradiation of carbon-carbon velvet specimens cause fiber shaft corrugation, though He⁺ irradiated samples have a more pronounced

Both He⁺ and D⁺ irradiation of carbon-carbon velvet specimens causes fiber shaft corrugation, though He⁺ irradiated samples have a more pronounced

Some W-coated carbon fiber shafts incur rupturing, in addition to increased W surface roughness after He⁺ irradiation