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Materials Irradiation Experiments and the
UW-Madison IEC Device

Summary of Presented Experiments

SRIM calculations have been used to estimate the range of He" in CVD silicon
carbide (SiC) as well as the range of He™ and D™ in carbon-carbon velvet
(CCYV) and tungsten coated carbon-carbon velvet (CCV/W).

CVD SiC samples (supplied by ORNL) were irradiated in the UW IEC device
to 1x10'% and 1x10" He*/cm? at 850 and 950 °C.

A partially masked SiC sample was irradiated to ~1.5x10" He*/cm? at 950 °C
CCYV and CCV/W samples were irradiated to 1x10'° He*/cm? at 1150°C and a
CCYV sample was irradiated to 1x10"° D*/cm?

SEM analysis has been performed to evaluate the surface damage on the CVD

SIC, CCV, and CCV/W as functions of temperature and/or fluence.
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He" and D™ Irradiation of CCV and CCV/W

At 950 °C we notice flaking and pore formation in the 1x10'® He*/cm? sample and an

increased level of pore formation in the sample irradiated to 1x10" He*/cm?
Irradiated @ 9350 °C
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1x10'® He*/cm?
Once again excessive flaking is evident on both specimens, though the level of pore
formation is not as high as the 1x10" He*/cm? and 950 °C specimen. These flakes appear to
be approximately several microns in thickness.

3 % )

Projected Range of Implanted lons *To the left, ion ranges in CVD SiC, CCYV,

and CCV/W are shown as a function of the

—<— CVD SiC (He ions)
100( o ccv (He ions)
—<O— CCVIW (He ions)

Covw (e | IEC ion energy. Investigated implantation
% ions

energies are noted

*Helium ion range in the CVD SiC

Range (nm)

corresponds roughly to the flake thickness
resultant from irradiation (a few microns).

*None of the calculated ion ranges
correspond to the damage penetration

lon Energy (keV) depth observed in the velvet specimens.
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Lack of damage in the unirradiated zone confirms that the damage is due to helium ion
fluence. The particles in the unirradiated zone are most likely a post-irradiation artifact.

SiC Conclusions

* Significant changes in SiC surface morphology occur at both 850 and 950 °C
and fluences (1x10'® He*/cm? to 1x10™ He"/cm?)

At constant He™ fluence, the characteristic damage of the sample is a function
of the temperature at which the sample is irradiated

However, ion fluence - NOT temperature, causes these surface morphology
changes

The authors gratefully acknowledge the financial support
of the HAPL program at the Naval Research Laboratory.

Unirradiated Carbon-Carbon Velvet Specimen
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CCYV irradiated with He" and D* to a fl

Tungsten-coated carbon-carbon velvet (CCV/W) irradiated with He" to a fluence of 1x10"°
ions/cm? at ~1150 °C

CCV and CCV/W Conclusions

Both He" and D™ irradiation of carbon-carbon velvet specimens cause fiber
shaft corrugation, though He" irradiated samples have a more pronounced
effect.

Both He™ and D™ irradiation of carbon-carbon velvet specimens causes fiber
shaft corrugation, though He" irradiated samples have a more pronounced
effect

Some W-coated carbon fiber shafts incur rupturing, in addition to increased
W surface roughness after He" irradiation



