

Ion Implantation Effects on CVD SiC and Carbon-Carbon Velvet Fusion Technology Institute, University of Wisconsin-Madison S.J. Zenobia, G.L. Kulcinski, R.F. Radel, R.P. Ashley, D.R. Boris

Carbon-Carbon Velvet Irradiation Experiments Ion Range & Carbon-Carbon Velvet Composition for the First Wall of the HAPL Reactor

Summary of Presented Experiments

- SRIM calculations have been used to estimate the range of He⁺ and D⁺ in carboncarbon velvet (CCV) and the range of He⁺ tungsten coated carbon-carbon velvet (CCV/W).
- CCV and CCV/W samples were irradiated to 1x10¹⁹ He⁺/cm² at 1150°C and a CCV sample was irradiated to 1x10¹⁹ D⁺/cm²
- SEM analysis has been performed to evaluate the surface damage on the CCV and CCV/W as functions of temperature and/or fluence.

Objective: Investigate the damage effects of helium and deuterium implantation on the first wall armor of the High Average Pulsed Laser (HAPL) reactor

Cutaway Schematic of HAPL Chamber

IEC Setup for Materials Irradiation

•For materials irradiation experiments the inner cathode grid is replaced with the carbon velvet specimens

Projected Range of Implanted Ions

•Tungsten-coated carbon-carbon velvet (CCV/W) irradiated with He⁺ to a fluence of 1×10^{19} ions/cm² at \sim 1150 °C

•Velvet fibers are ~1 mm long by $\sim 10 \ \mu m$ diameter. CCV specimens use pitch graphitic carbon as the base material of the fiber (~9 μm diameter) and are then CVD coated by an amorphous carbon layer ($\sim 0.5 \mu m$).

•CCV/W samples receive an additional sputter coating of tungsten $\sim 1 \ \mu m$ thickness.

•To the left, He⁺ and D⁺ ranges in CCV, and CCV/W are shown as a function of the IEC ion energy.

•None of the calculated ion ranges correspond to the damage penetration depth observed in the velvet specimens.

He⁺ and D⁺ Irradiation of CCV and CCV/W

•Unirradiated Carbon-Carbon Velvet Specimen

Both He⁺ and D⁺ irradiation of carbon-carbon velvet specimens cause fiber shaft corrugation, though He⁺ irradiated samples have a more pronounced effect.

Both He⁺ and D⁺ irradiation of carbon-carbon velvet specimens causes fiber shaft corrugation, though He⁺ irradiated samples have a more pronounced effect Some W-coated carbon fiber shafts incur rupturing, in addition to increased W surface roughness after He⁺ irradiation Each sample experiences measurable mass loss after

irradiation

Special Thanks to: The Grainger Foundation, National Nuclear Security Administration under DOE grant DE-AL52-06NA25396, and The Wilson Greatbatch Foundation

He⁺ and D⁺ Irradiation of CCV and CCV/W

•CCV irradiated with He⁺ and D⁺ to a fluence of $1x10^{19}$ ions/cm² at ~1150 °C

 1×10^{19} •CCV irradiated with He⁺ and D⁺ and CCV/W irradiated with He⁺ to fluences of ions/cm² at ~1150 °C

CCV and CCV/W Conclusions