Preliminary Results for Steady State Implantation of He⁺ and D⁺ in Carbon Velvet and W – Coated Carbon Velvet

S. J. Zenobia, G. L. Kulcinski, T. Knowles, R. F. Radel, D. Boris, C. Seyfert, D. Donovan, A. Creuziger, J. Nacker

HAPL Meeting-PPPL December 13th, 2006

Fusion Technology Institute University of Wisconsin-Madison

Progress Since Last Meeting

- Carbon carbon velvet (CCV) and tungsten coated carbon velvet (W/CCV) samples acquired from Tim Knowles at ESLI Laboratories
- A molybdenum irradiation holster was manufactured to ensure repeatability between each of the carbon velvet irradiations.
- SRIM Calculations were performed to estimate the range of He⁺ and D⁺ for the carbon and tungsten coated specimens
- CCV specimens were irradiated to 1x10¹⁹ ions/cm² using both helium and deuterium ions at 1150 °C
- A W/CCV specimen was irradiated to 1x10¹⁹ He⁺/cm² at 1150 °C
- SEM analysis has been performed to evaluate the surface morphology changes on the carbon velvet specimens from irradiations

At 30 keV He⁺ Has a Similar Sputtering Yields on Carbon and Tungsten

Helium Sputtering Coefficients

Objective: Assess Viability of Carbon Velvet as HAPL's First Wall Armor

Unirradiated CCV

T ~ 1150 °C, ϕ ~ 10¹⁹ He⁺/cm², V ~ 30 kV

Irradiation of CCV to 10¹⁹ D⁺/cm² also Results in Surface Roughness

T ~ 1150 °C, ϕ ~ 10¹⁹ D⁺/cm², V ~ 30 kV

CCV Unirradiated

 $CCV - 10^{19} D^{+}/cm^{2}$

 $CCV-10^{19}\ He^+\!/cm^2$

CCV – Irradiated to $10^{19}\,D^{+}\!/cm^2$ @ 1150 $^{\circ}C$

CCV – Irradiated to 10^{19} He⁺/cm² @ 1150 °C

Objective: Assess Viability of Tungsten Coated Carbon Velvet as HAPL's First Wall Armor

Unirradiated Tungsten – coated Carbon Velvet

20 µm

SEM Analysis Illustrates Increased Surface Roughening on W-Coating after Irradiation of W/CCV to 10¹⁹ He⁺/cm²

T ~ 1150 °C, ϕ ~ 10¹⁹ He⁺/cm², V ~ 30 kV

After Irradiation of W/CCV to 10¹⁹ He⁺/cm² Rupturing of the W-Coating is Also Observed

T ~ 1150 °C, ϕ ~ 10¹⁹ He⁺/cm², V ~ 30 kV

Masked W/CCV Experiences W-Coating Cracks But Not Increased Surface Roughness

W/CCV Unirradiated

 $W/CCV - 10^{19}$ He⁺/cm², 105 min. runtime

Velvet Specimens Exposed to He⁺ Appear to Sustain an Exaggerated Surface Corrugation Effect

CCV - 10¹⁹ D⁺/cm² @ 1150 °C CCV - 10¹⁹ He⁺/cm² @ 1150 °C W/CCV - 10¹⁹ He⁺/cm² @ 1150 °C

Velvet Fibers in the Masked Regions Experience Surface Pitting and W-Coating Cracks

CCV - 108 min. runtime

CCV – 87 min. runtime

W/CCV - 105 min. runtime

W/CCV – Irradiated to 10^{19} He⁺/cm² @ 1150 °C

CCV – Irradiated to $10^{19} \text{ D}^+/\text{cm}^2 @ 1150 \degree \text{C}$

Image: Mass ControlAll Carbon Velvet Samples Experience Measurable Mass Loss After IrradiationImage: Mass Control			
1x10 ¹⁹ ions/cm ²	Pre - Irradiation Mass (mg)	Post-Irradiation Mass (mg)	Irradiation Mass Loss (mg)
CCV			
(D+)			
CCV			
(He ⁺)			
W/CCV			
(He ⁺)			

Preliminary Observations @ 1150 °C

- Both He⁺ and D⁺ irradiation of carbon-carbon velvet specimens causes fiber shaft corrugation, though He⁺ irradiated samples have a more pronounced effect
- Some W-coated carbon fiber shafts incur rupturing, in addition to increased W surface roughness after He⁺ irradiation
- Both He⁺ and D⁺ irradiation resulted in measurable mass loss in each of the carbon velvet specimens
- Masked sections of all carbon velvet specimens exposed to high temperature and high voltage, sustained less damage (quantitiative), as well as a qualitatively different surface structure than exposed sections

Possible Future Work

- Damage investigations for CCV and W/CCV held at high temperature without ion fluxes
- Damage investigations for CCV and W/CCV held at high temperature and high voltage without ion fluxes
- Irradiation of W-coated carbon velvet specimen using D⁺

Possible Future Work, Cont.

- Investigation of other carbon velvet source material (pan fibers, glassy carbon, etc.)
- Energy Dispersive Spectrometer (EDS) post-irradiation chemical analysis to determine surface composition
- FIB analysis of individual fibers on all examined samples

Questions?

Surface Damage Comparison of W, TaC Foam, SiC, and CCV Samples at 1x10¹⁹ He⁺/cm²

W-Coating Rupturing Occurs on Different Fibers Over the Sample

Irradiated Zone of *Masked* SiC Sample Illustrates the Effects of Repeated Flaking

30 kV, 5.5 mA, 950°C, ~1.5x10¹⁹ He⁺/cm², 147 minute runtime

- HAPL total He dose (5 Hz, 10.5 m radius) is $\approx 6 \times 10^{12}/\text{cm}^2$ per pulse (3 x 10¹³/cm²s ave.)
- IEC steady state He flux @ 6 mA \approx 10¹⁴/cm²s
- IEC pulsed instantaneous He flux (10 Hz, 1 ms, 60 mA) $\approx 10^{13}$ /cm² per pulse--->($\approx 10^{16}$ /cm²s)

Masked SiC Sample Surface Roughening is Due to Irradiation Not Temperature Exposure

30 kV, 5.5 mA, 950°C, ~1.5x10¹⁹ He⁺/cm², 147 minute runtime

The IEC Voltage Capability Covers Nearly 25% of the Ions at the First Wall

Implantation Covered a Small Range of the Helium Energy Spectrum

Range of Helium lons in Tungsten

IEC Ion Implantation Process

