

Steady-State He⁺ Implantation In Engineered First Wall Armor Materials

S. J. Zenobia, B. Egle, T. Knowles, R. Raffray, J. Shea, S. O'Dell, G. Kulcinski and the IEC Group

19th HAPL Meeting – U. of Wisconsin-Madison October 22nd, 2008

> Fusion Technology Institute University of Wisconsin-Madison

- Fine- (FGW) and Nano-grain (NGW) tungsten
 - Surface morphology change
 - Helium retention
 - Preliminary observations
- W-needles
 - Experimental setup
 - Surface morphology change
 - Summary
- Conclusions, Future Work & Questions

Irradiation conditions using 30 keV ³He⁺

FGW	φ	3x10 ¹⁷ cm ⁻²	9x10 ¹⁷ cm ⁻²	10 ¹⁹ cm ⁻²
	Τ	700 <u>+</u> 50 °C	850 <u>+</u> 50 °C	1050 <u>+</u> 50 °C
NGW	φ	10 ¹⁷ cm ⁻²	10 ¹⁸ cm ⁻²	10 ¹⁹ cm ⁻²
	Τ	1150 <u>+</u> 50 °C	1050 <u>+</u> 50 °C	1000 <u>+</u> 50 °C

- Scanning electron microscopy (SEM) & focused ion beam (FIB) milling analyses were performed to diagnose surface morphology change
- Pre- & post- irradiation masses were measured to determine the extent of mass loss
- Retained helium fluence was measured using ³He(d,p)⁴He nuclear reaction analysis (NRA) at the UW 1.7 MV tandem accelerator facility

Unirradiated Fine- & Nano-Grain Tungsten

Fine-Grain Tungsten

- ~87% dense
- Grain size $< 5 \mu m$

Nano-Grain Tungsten

- 80-90% dense
- Grain size ~ 240 nm

Mass Loss Per Full Power Year [kg/FPY] Operation In The Reference HAPL Chamber – *w/o Ion Abatement*

Fluence [He ⁺ /cm ²]: FGW	Time [FPD] @ reference He ⁺ spectrum (10-90 keV)	Waste [kg/FPY]	Fluence [He ⁺ /cm ²]: NGW	Time [FPD] @ reference He ⁺ spectrum (10-90 keV)	Waste [kg/FPY]
3x10 ¹⁷	0.3	500 <u>+</u> 200	1017	0.1	3700 <u>+</u> 2600
9x10 ¹⁷	4	510 <u>+</u> 80	10 ¹⁸	4.4	550 <u>+</u> 250
10 ¹⁹	44.2	120 <u>+</u> 10	1019	44.2	60 <u>+</u> 20

NRA* & NDP* Gives Retained Helium Fluence In *PCW*, *FGW* & *NGW* (700 – 1150 °C)

*NRA = Nuclear Reaction Analysis *NDP = Neutron Depth Profiling

Preliminary Observations (FGW & NGW)

- The threshold for pore formation in FGW lies between $3x10^{17} - 9x10^{17}$ He⁺/cm² and between $10^{17} - 10^{18}$ cm⁻² in NGW, becoming extensive at 10^{19} cm⁻²
- Sub-surface pores penetrate much deeper than the range of 30 keV He⁺ (84 nm), up to ~900 nm in FGW and ~500 nm in NGW
- Both FGW & NGW specimens sustained measurable mass loss at all irradiation fluences and temperatures
- NRA reveals that the retention characteristics of standard PCW, FGW & NGW are very similar at fluences above ~10¹⁷ He⁺/cm² over the examined temperature range

ESLI Tungsten Needles

Irradiation conditions using 100 keV ⁴He⁺ ions

UW Etch	ESLI Electro-polish
φ - 3x10 ¹⁸ cm ⁻²	φ - 1.3x10 ¹⁹ cm ⁻²
T - 700 <u>+</u> 50 °C	T - 1000 <u>+</u> 50 °C

 SEM & FIB analyses were performed to diagnose surface morphology change

Fluence ~ 1.3×10^{19} He⁺/cm², Temperature ~ $1000 \text{ }^{\circ}\text{C}$

- Implantation to $3x10^{18}$ cm⁻² at ~700 °C showed pore formation on all parts of the W-needle
- Implantation to 1.3x10¹⁹ cm⁻² at ~1000 °C resulted in the micron-scale 'Chihuly effect' on all parts of the W-needle
- FIB analysis confirmed uniform flux distribution of implanted helium ions
- Pore penetration depths at the needle tips ranged from ~300 – 1600 nm, much greater than the predicted SRIM range of ~90 nm (100 keV He⁺)

- Thresholds for pore formation in FGW & NGW are increased from standard PCW by about a factor of 10
- The surface morphology response of FGW & NGW does not appear to be better than standard PCW at intermediate (10¹⁸ cm⁻²) and high (10¹⁹ cm⁻²) implanted He⁺ doses
- At fluences above 10¹⁷ cm⁻², both FGW & NGW show comparable helium retention to that of standard PCW
- *Single* W-needles do not show increased robustness to He⁺ implantation to that of flat PCW
- *Single* W-needles do not show a noticeable increase in the threshold fluence necessary for pore formation

Future Work

- Nano-grain tungsten
 - Ten (10) additional specimens are in preparation at PPI
 - Fluence & temperature scans using Egle's ion gun technology (E-field free environment)
 - High temperature anneals between incremented implant doses
- W-Needle
 - Implantation of needle clusters
 - Implantation with deuterium ions
 - Chemical analysis using Energy Dispersive Spectrometry (EDS)

Samuel Zenobia **University of Wisconsin-Madison 1500 Engineering Drive** Madison, WI 53706 (608) 265-8699 zenobia@wisc.edu

Adjusted Densities of Porous Layers Show Increased Range of Helium Ions

Coral Spires & Extended Porous Layers in FGW & NGW Consistent w/ Literature Findings

Tokunaga, et al. (2004) PCW – 15 keV He⁺ @ 2600 °C and 3.23x10¹⁹ cm⁻²

NGW - 30 keV He⁺ @ 1010 °C and 10¹⁹ cm⁻²

FGW – 30 keV He⁺ @ 1050 °C and 10^{19} cm⁻²

EHT = 3.00 kV WD = 5.2 mm

Signal A = SE2 Date :28 Aug 2008 Photo No. = 7656 Time :13:41:33

ZEINN

PCW, FGW & NGW All Show Increased Helium Trapping Efficiency At Lower Fluences₂₇

Implanted Fluence [He⁺/cm²]

Blistering & Exfoliation Is Also Observed On W-Needles Implanted w/ *Helium Ions*

Fluence ~ $3x10^{18}$ He⁺/cm², Temperature ~ 700 °C

Pore Formation Occurs At Each Part of the W-Needle Irradiated w/ *He*⁺

Fluence ~ $3x10^{18}$ He⁺/cm², Temperature ~ 700 °C

Tip of Irradiated W-Needle Became Dulled from Arcing or Handling

SRIM Calculations of He⁺ & D⁺ Range In WNeedles @ 87° Angle of Incidence

Calculations From Mass Loss Correspond To Severe Erosion From FGW & NGW Surfaces

- 800 FGW 600 400 400 200 1.0E+17 1.0E+18 1.0E+19 1.0E+20 Fluence [³He⁺/cm²]
- •At similar temperatures FGW is eroded more severely than NGW
- •Within error, surface erosion of NGW is constant for the examined temperature range
- •Mass loss of FGW increases with irradiation temperature

- •The maximum thickness lost in FGW was ~650 nm and ~300 nm in NGW
- •Thickness lost in FGW appears to scale logarithmically with implant fluence

Deuterium Irradiated W-Needle Sustained Minor Pore Formation On Blunted Tip

Fluence ~ 4x10¹⁸ D⁺/cm², Temperature ~ 750 °C ~0.5 FPD in Reference HAPL Chamber (< 90 keV)

Taper And Shaft Of D+ Irradiated Needle Show Extensive Blistering

Fluence ~ 4x10¹⁸ D⁺/cm², Temperature ~ 750 °C ~0.5 FPD in Reference HAPL Chamber (< 90 keV)

Blistering Of Tungsten After Hydrogen Species Ion Implantation Consistent w/ Literature Findings

- flat PCW
- (1) 700 keV H^{-} - 1.6x10¹⁸ cm⁻²
 - T < 200 °C
- (2) 1 keV H⁺ & C⁺ - 0.8% C+
 - 8x10²⁰ ions/cm⁻²
 - T~380 °C

- UW-IEC Results, 2008
- W-Needle
- $100 \text{ keV } \text{D}^+\text{(}4\text{e}18 \text{ cm}^{-2}\text{)}$
- 750 °C