

Innovations in 3-D Neutronics Analysis for Fusion Energy Systems

Paul P.H. Wilson Fusion Technology Institute U. Wisconsin-Madison

UW Plasma Seminar 03/19/2007

03/19/2007

UW Fusion Neutronics Team

5 Faculty/Scientists **5** Graduate Students 1 Visiting Scientist L. El-Guebaly 1 Post-doc M. Sawan **1** Researcher **Nuclear Design & Analysis** (A. Ibrahim) T. Bohm (B. Smith) P. Phruksarojanakun **D.** Henderson E. Marriott (B. Kiedrowski) (C. Aplin) P. Wilson **Radiation Transport 3-D Geometry Capability** & Effects Code **Enhancements** (R. Slaybaugh) **Development** T. Tautges (ANL) UW Plasma Seminar Paul P.H. Wilson

Innovations in 3-D Fusion Neutronics

- Why Fusion Neutronics?
- Transport methods
- Activation methods
- Applications
 - High Average Power Laser IFE
 - ARIES-Compact Stellarator
 - ITER Benchmark
 - ITER First Wall & Shield
- Summary

Role of Neutronics in Fusion WISCONSIN System Design

- Source term for engineering design
 - Heat removal/electricity generation
 - Tritium breeding
- Source term for engineering challenges
 - Damage to materials
 - Manufacturing for replaceable components
 - Shielding of sensitive components
 - Accident analysis
- Source term for health physics and waste management
 - Activation & photon source

UW Plasma Seminar 03/19/2007

- Fixed 14.1 MeV neutron source
- Dominated by
 - Shielding/deep penetration
 - Labyrinth streaming
- Nuclear responses depend on detailed neutron flux spectrum
- Combined neutron/photon problems for nuclear heating responses

- 1-D/2-D calculations
 - Deterministic
 - Rapid iteration in design process
 - Require expertise in developing valid approximations
- 3-D calculations
 - Monte Carlo
 - Confirm validity of 1-D/2-D calculations
 - Identify hi-fidelity variations in results

UW Plasma Seminar 03/19/2007

- MCNP(X) software from LANL
- Complex geometry

 2nd order analytic surface descriptions
- Continuous energy treatment
- Structured mesh tallies for high-fidelity results
- Variance reduction techniques for improving computational performance

- Use MOAB or Common Geometry Module (CGM) to interface MC code *directly* to CAD (& other) geometry data
 - Previous efforts found CAD-based ray tracing to be too slow (20-50x)
 - What's new?
 - Implement ray-tracing approximations to reduce calls to exact CAD function
 - Can be implemented once & reused for all representations

UW Plasma Seminar 03/19/2007

- Key issue: accelerate ray-tracing (fewer & faster)
- Key technology: oriented bounding box trees

Hierarchical Subdivision

B

Oriented Bounding Box

Inside Bounding Box (w/ path length limit)

Hierarchical Oriented Bounding WISCONSIN BOX

- Simple (inexpensive) bounding box test
 - Streaming
 distance to
 closest
 approach
 - Collision
 distance to
 closest
 approach

- Tracking isotopic inventories over time
 Stiff system of ODE's (a la Bateman)
- Pulsed/intermittent irradiation histories
 - Steady-state approximations can introduce errors
- High fluences
 - Long activations chains
 - Loops are possible
- Widely varying flux magnitudes and spectra

 Solutions vary spatially
- Waste management issues
 - Problem isotopes can be from rare initial constituents

- Physical modeling features
 - Loop unrolling
 - Global truncation
 - Reverse calculation (`adjoint')
 - Cross-section driven = no fixed reaction table
 - Built-in responses: waste disposal rating, adjoint dose folding
- Mathematical features
 - Matrix solutions for efficient pulsing
 - Element-wise adaptive mathematical method
 - Bateman vs. Laplace expansion vs. recursive Laplace inversion

- Complex flow paths & loops
- Continuously varying sources
- Chemical separation
- Variance reduction
 - Forced reactions
 - Reaction splitting
- Automated VR adjustment
- Global Figure of Merit

- High Average Power Laser IFE
- ARIES Compact Stellarator
- ITER Benchmark
- ITER First Wall & Shield

High-Average Power Laser (HAPL) IFE Power Plant WISCONSIN Final Optics

- Laser beams must have direct line of sight to target
- Mirrors in direct line of sight from target
 - Efficient mirrors are sensitive to radiation damage

High-Average Power Laser (HAPL) IFE Power Plant

UW Plasma Seminar 03/19/2007

HAPL mesh tally w/ geometry

UW Plasma Seminar 03/19/2007

The ARIES Project

ARIES Mission

Perform advanced integrated design studies of long term fusion energy embodiments to identify key R&D directions and provide vision for the U.S. fusion program.

ARIES Goal

Demonstrate that fusion power can be a safe, clean, and economically attractive option.

UW Plasma Seminar 03/19/2007

Cross Section of ARIES-AT Power Core Configuration

ARIES Compact Stellarator

- ARIES-CS has a complex 3-D geometry
 - Plasma surfaces based on high-order Fourier series expansion
 - Machine surfaces based on offsets from *last closed magnetic* surface
- Major radius: 7.75 m
- Fusion power: 2355 MW
 - Radiative power: 354 MW
- 5cm SOL
 - except divertors (30cm SOL)
- FW area: 727 m²

UW Plasma Seminar 03/19/2007

Paul P.H. Wilson Innovations in 3-D Fusion Neutronics

21/57

Need 3-D Source Definition

- 1-D modeling
 - Uniform source acceptable approximation
- 3-D modeling enabled by new neutronics tool
 - Source distribution becomes limiting approximation in model analysis

Neutron Source Methodology

- Generate hex mesh in real space from uniform mesh in *flux coordinate space*
 - Idealized (R, θ , ϕ) toroidal system
 - Degenerate hexes at magnetic axis
- Generate cumulative distribution function for source density in hex mesh
- Sample for which hex mesh cell
- Sample for position in chosen mesh cell
 - Sampling a location in an arbitrary hex, subject to an interpolated PDF is analytically challenging

UW Plasma Seminar 03/19/2007

Note: based on Data from J. Lyon (ORNL)

Paul P.H. Wilson Innovations in 3-D Fusion Neutronics

UW Plasma Seminar 03/19/2007

UW Plasma Seminar 03/19/2007

Results and Analysis

- Calculate NWL on surface grid
 - Some statistical variation
- Transform (x,y,z)coordinates of each patch to (θ_P, ϕ_T)
- Interpolate results on 200 x 200 uniform grid in

 (θ_P, ϕ_T)

UW Plasma Seminar 03/19/2007

	Peak (Min) [MW/m ²]	Toroidal Angle (degrees)	Poloidal Angle (degrees)
Real 3-D Source [5 cm SOL]	5.26 (0.32)	-11 (-4)	-18 (-116)
Real 3-D Source [30 cm SOL]	4.42 (0.42)	-11 (-11)	-25 (122)
Uniform Source	3.56	-49	-21
Rad. Heating	0.68 (0.2)	-34 (11)	-17 (-117)

UW Plasma Seminar 03/19/2007

ARIES-CS Tritium Breeding Ratio

