Progress in Explosives Detection using D-D Fusion at the University of Wisconsin-Madison A.L. Wehmeyer

E.C. Alderson, R.P. Ashley, D.R. Boris, G.A. Emmert, R.C. Giar, G.L. Kulcinski, G.R. Piefer, R.F. Radel, T.E. Radel, and J.F. Santarius

> Fusion Technology Institute University of Wisconsin Madison, WI

Outline

- Background
- Experimental Objective
- Theory of Explosives Detection
- Experimental Setup
- Modeling Experiment in MCNP5
- MCNP5 Calculational Results
- Experimental Results without Explosives
- Summary
- Future Work

Background Information

- Thermal neutron activation analysis (TNAA) can be used for detecting common explosives.
- Typical explosive compositions contain low Z material (C, H, N, O).
- Composition 4 (C-4), a military plastic explosive, is approximately 90% RDX by weight (RDX $C_3H_6N_6O_6$).

Package Containing 24 – 20g vials of Composition 4 (C-4)

Experimental Objective

• Proof-of-principle experiment to detect explosives using the D-D fusion reaction in an IEC device.

4

Characteristic gamma rays from hydrogen and nitrogen can be detected using TNAA

	r aper Cotton Silk Orlon Wool Melamine Polyester Rayon	Nyion Lucite Acetamide Benzene Sugar PVC Wood Paper	Paraffin Wax Polyethylene Ethanol Methanol Water Ammonium acetate	Heroin LSD Cocaine Morphine Mandrax	RDX RDX EGDN Nitrocellulose Nitroglycerene TNT Tetryl Picric Acid	Material
0 20 40 60 80 10						H (2.22 MeV) C N (10.83 MeV) 0
0	O Miscellaneous materials				Explosives	

Source: A. Buffler, "Contraband Detection by Fast Neutron Scattering," presented at the 2nd National Nuclear Technology Conference, NAC, South Africa, May 14-15, 2001.

Atom fraction %

March 14-16, 2005

CAD Representation of UW Experimental Setup for Explosives Detection

7th U.S.-Japan IEC Workshop

March 14-16, 2005

UW Experimental Setup for Explosives Detection using IEC Fusion

UW Experimental Setup for Explosives Detection using IEC Fusion (cont.)

UW Experimental Setup for Explosives Detection using IEC Fusion (cont.)

March 14-16, 2005

MCNP Model of UW Experimental Setup for Explosives Detection and MCNP Results

TOP VIEW

SIDE VIEW

FROM CENTER OF EXPLOSIVES

7th U.S.-Japan IEC Workshop

Changed to Vertical Explosives Array Configuration based on MCNP Results

MCNP Model and Results from Vertical Explosives Array Configuration

TOP VIEW

NaI Detector Calibration with two known sources (¹³⁷Cs and ⁶⁰Co)

Experimental Results from D-D Fusion Neutrons without Explosives

- Completed preliminary UW experimental setup for explosives detection.
- Completed preliminary MCNP5 model of UW experimental setup for explosives detection.
- Optimized placement of explosives within activation cell based on MCNP5 calculations.
- Successfully calibrated NaI detector and performed initial experiments without explosives

7th U.S.-Japan IEC Workshop

Future Work

- Conduct experiments with explosives (C-4, TNT, Urea fertilizer)
- Further refinement of MCNP5 model to include tally for (n,γ) reactions for ¹⁴N and tally for pulse height detector output
- Increase shielding on backside of experimental setup and move detector closer to explosives
- Increase neutron production rates
 - Increase cathode voltage and current
 - Vary cathode size
 - Vary cathode to anode distance

Preliminary work has begun on studying different factors which might affect neutron production rates

Cathode Size

Cathode Geometry

Cathode Material

