SELF-SHIELDING EFFECTS IN DECAY HEAT CALCULATIONS FOR TUNGSTEN

M.E. Sawan, H.Y. Khater
Fusion Technology Institute
The University of Wisconsin- Madison

H. Iida, R.T. Santoro
ITER JCT Garching Co-Center
Garching, Germany

Background

- Tungsten is an attractive candidate for the plasma facing components
- PFC exposed to high energy neutron flux resulting in significant activation
- Decay heat generated in tungsten PFC has important safety consequences
- 187 W ($T_{1/2}$ = 23.85 h) dominant contributor for several days after shutdown
- It is produced from 186 W(n, γ) reaction with a giant resonance at 20 eV
- Precise representation of geometry and energy variable essential to properly account for self-shielding effects

ITER Divertor Model

- Detailed 3-D geometrical configuration of ITER divertor cassette modeled
- Monte Carlo code MCNP-4A used with FENDL data
- Each divertor cassette divided into 103 regions to provide detailed spatial distribution of neutron flux
- Layered configurations of dome PFC and vertical targets modeled accurately with front W PFC modeled separately
- 1 cm W PFC in dome followed by 2 cm thick Cu/water heat sink

Vertical cross section of ITER cassette model

Neutron Energy Spectrum in WPFC

PeakEnergyIntegrated NeutronFlux(n/cm²s)

Dome PFC 2.16×10^{14}

OuterVerticalTarget 1.81x10¹⁴

InnerVerticalTarget 1.16x10¹⁴

Large dip in spectrum around 20 eV due to giant 186 W (n, γ) resonance

Geometrical Modeling Effects

- Homogenization of W PFC with Cu/water heat sink significantly overestimates ¹⁸⁷W production rate
- Hydrogen in homogenized zone helps slow down neutrons to the 186 W(n, γ) giant resonance
- ¹⁸⁷W production rate can be overestimated by up to a factor of two depending on thickness of homogenized zone and water content
- Layered configuration must be modeled correctly to properly account for self-shielding

Homogenization Effect

Two calculations performed using 3-D model:

- 1) 1 cm thick W PFC modeled separately followed by 2 cm thick heat sink layer
- 2) Homogeneous composition of W, Cu and H₂O used in front 3 cm of dome

¹⁸⁷W Production Rate per cm³ of W (nuclides/cm³s)

Separate 1 cm W Layer 3.8x10¹²

Homogeneous3cmZone

Front 1 cm 6.2×10^{12} Back 2 cm 4.4×10^{12} Whole 3 cm 5.0×10^{12}

- Value in front 1 cm overestimated by factor of 1.63 with Whomogenization
- Homogenization results in spectrum softening

Effects of Energy Representation

- Resonance self-shielding effects treated correctly in continuous energy (pointwise cross section data) Monte Carlo calculations
- Multi-group activation libraries do not include self-shielded cross sections with smooth 1/E weighting spectrum in resonance region
- Multi-group activation data overestimate 186 W(n, γ) cross section at giant 20 eV resonance

Relative ¹⁸⁷W Production Rate Directly from MCNP 1 MCNP flux with 46-group activation data 6.9 MCNP flux with 175-group activation data 1.9

Accounting for Self-Shielding in Multi-Group Activation

To properly account for self-shielding in multi-group activation calculation

• Bypass reaction rate calculation in activation code and use correct reaction rate calculated from MCNP for reactions with big resonances and which produce dominant radionuclides

or

• Calculate from MCNP the effective multi-group cross sections for the reactions of interest and modify the activation library to include these self-shielded cross sections

Effective Multi-Group Self-Shielded Cross Sections

• The reaction rates and neutron spectra calculated from MCNP were used to determine the effective reaction cross sections in each energy group

• About an order of magnitudeself-shielding observed at the 20 eV resonance

Conclusions

- Decay heat generated in W PFC dominated by 187 W produced from the 186 W(n, γ) reaction characterized by a giant resonance at 20 eV
- Precise representation of the geometry and energy variable is essential to properly account for self-shielding effects
- Large discrepancies in calculated W decay heat result from homogenization with the heat sink that includes water and using non-self-shielded multi-group cross sections in the activation calculation
- For correct analysis one should rely on the continuous energy 3-D Monte Carlo results with proper layered heterogeneous modeling to calculate the spectra and reaction rates or effective self-shielded cross sections to be used in the activation calculation

