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Objective of Present Study

 Tounderstand If the recent NRL direct drive target
design can survive in a SOMBRERO-type dry
wall chamber (no vaporization of C-C composite)

e ToInvestigate the degree to which the Xefill gas
could be reduced to lower the aerodynamic
frictional heating of direct drive targets.

o Apply latest analysis methods and explore the
possibility of innovative injection techniquesin
dry wall chambers




Roadmap to Calculate IFE Wall/Target Survival Conditions
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First Wall Erosion and Target Heating During I njection are Competing

Concernsin Direct-Drive Laser Fusion Dry-Wall Target Chambers
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Chamber Physics Critical I ssuesinvolve Target Output, Gas

Behavior and First Wall Response

Target Output Gas Behavior Wall Response
4 4

-

Design,
Fabrication,
Output Simulations,
(Output Experiments) [ Neutrons

Wall Properties,
Neutron Damage,
Near-Vapor Behavior,
Thermal Stresses

Gas Opacities,
Radiation Transport, Radiation,
Rad-Hydro Simulations

UW usesthe BUCK'Y 1-D Radiation-Hydrodynamics Code to Simulate
Target, Gas Behavior and Wall Response.
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BUCKY, aFlexible 1-D Lagrangian Radiation-Hydrodynamics

Code; Useful in Predicting Target Output and Target Chamber
Dynamics

e 1-D Lagrangian MHD (spherical, cylindrical or slab).

e Thermal conduction with diffusion.
« Applied electrical current with magnetic field and pressure calculation.
o Equilibrium electrical conductivities

e Radiation transport with multi-group flux-limited diffusion,
method of short characteristics, and variable Eddington.

« Non-LTE CRE linetransport.
* Opacitiesand equations of state from EOSOPA or SESAME.




BUCKY, aFlexible 1-D Lagrangian Radiation-Hydrodynamics

Code; Useful in Predicting Target Output and Target Chamber
Dynamics

e Thermonuclear burn (DT,DD,DHe?®) with in-flight reactions.

e Fusion product transport; time-dependent charged particle
tracking, neutron energy deposition.

- Applied energy sources: time and energy dependent ions, electrons,
X-raysand lasers (normal incidence only).

 Moderate energy density physics. melting, vaporization, and thermal
conduction in solids and liquids.

- Benchmarking: x-ray burn-through and shock experimentson
Nova and Omega, x-ray vaporization, RHEPP melting and
vaporization, PBFA-I1 K emission, ...

« Platforms: UNIX, PC, MAC
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Direct-Drive Targets Under Consideration Have

Different Output

Direct-drive L aser Targets

SOMBRERO (1990) NRL (1999) NRL (1999)
Standard Direct-Drive Radiation Tallored-Wetted Foam Wetted Foam

———_1uCH+300A Au 111 CH

~1.95 mm ’\\1.62 mm

0.265g/cc DT Fuel
mm

N

0.25 gl/cc DTV A 1.44 mm
1.50 mm apor 122 mm
Laser Energy: 4MJ Laser Energy: 1.3 MJ Laser Energy: 1.6 MJ
Laser Type: KrF Laser Type: KrF Laser Type: KrF
Gain: 100 Gain: 127 Gain: 108
Yield: 400 MJ Yield: 165 MJ Yield: 173 MJ
Debrislons Spectr a: Spectra:
94keV D- 5.81MJ . : .
lkeV T- 872MJ Calculated with BUCKY Not Y et Calculated
138keV H- 9.24MJ *Calculated by NRL
188 keV He- 4.49 MJ «Calculated with Lasnex
1600 keV C - 55.24 MJ
Total - 83.24 MJ per shot




Laser Quickly Burnsthough 300 A Au and 1 u Plastic

and Launches a Shock in DT-wetted Foam

21
*Close-up of laser -
burning through thin 2075
gold and plastic shells -
of NRL target 2.05 |
*Gold and plastic are hot -
and rapidly rqufylng, = 2025
probably not in local = -
thermodynamic = , - AU
equilibrium. 2 -
*Gold is expanding at 75 & :
km/s from laser blow-off. & 127> 3
1.95 == —
1.925 | -
B | | | | i | | | | i | | | | i | | | | i
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|mplosion, Burn and Explosion of NRL Radiation

Smoothed Direct-Drive Laser Fusion Tar get

0.5
*22% of DT iceis burned:;

NRL and LLNL get about
32 %, though peak pR
(LLNL) and bang time
(NRL) do agree.

Very little DT in wetted

go.s
foam is burned. =
Thiscalculationyielded -3
115 MJ; another, 200MJ G,
o
Other yields would be
achieved with further
tuning. 01

*Target expands at afew

time 108 cm/s and radiates. ol

W
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lon Spectrum for NRL Radiation Pre-Heated

Target Dependson Yied

*The particle energy of each speciesin each zoneisthen calculated as mv4/2 on the final time step of
the BUCKY run. Thistimeislate enough that theion energies are unchanging. The numbers of

ions of each speciesin each zone are plotted against ion energy.
*The spectra from direct fusion product D, T, H, He?, and He* are calculated by BUCKYY but

they don’t makeit out of thetarget.
*Theion spectraismoreenergetic for 200 MJ yield

lon Spectrum for 115 MJ Yield NRL Target lon Spectrum for 200 MJ Yield NRL Target
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lon Spectrum Experimentson Z arein Progressto

Validate Target Output Calculations
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X-ray Spectrafrom Targetsis Changed by

«X-ray spectra areconverted to
sums of 3 black-body spectra.

*Time-dependant spectraarein
Gaussian pulseswith 1 ns half-
widths and are used in chamber
simulations.

» Time-integrated fluences are
shown for 115 MJ and 200 M J
NRL and 400 MJ SOMBRERO.

*The presence of Au inthe NRL
targets adds emission in spectral
region above a few keV.

*At higher yield the Auismore
important.
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Thethreat spectrum can bethought of asarising from

three contributions; fast x-rays, unstopped ions, and

re-radiated x-rays

Some debris ions are deposited in chamber gas, which
re-radiates the energy in the form of soft x-rays

e

‘ Some debrisions are absorbed
directly in the wall.

The x-rays directly released by the target are, for Xe at the pressures
contemplated for the DD target, almost all absorbed by the wall.

W

Thewall (or
armor) reacts
to these
Insultsin a
manner
largely
determined
by it's
thermal
conductivity
and stopping
power.



For the current calculations, IONMIX has been

used to generate Non-L TE Xe opacity tables

EOSOPA (LTE) / IONMIX COMPARISON: Xe lel6/cc

1.E+07
L 1.E+06
Xe Average charge state, n_i = 1el6/cc — IONMIX 1 eV |
- - -EOSOPA 1 eV
2 1.E+05 1 —— IONMIX 100 eV
50 T ~. |~ - *EOSOPC 100 eV . o

e/ 1E+04 7 - I. 1 [ s ' ' [] =
X — IONMIX > ¥ A
g 40 e L
e —LTE o 1.E+03 ' S
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2 30 | o i’ =i i I_
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Electron Temperature (eV)
1.E-02 : } : :
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

Photon Energy (eV)

«Xegasat or below 0.5 Torr in Density isnot in LTE.
*Non LTE (IONMIX) ionization is substantially below the L TE (Saha) ionization.
*The Xe opacity can differ substantially between LTE (EOSOPC) and Non-LTE (IONMIX).

*|ONMIX opacities are used in this study.



A C-C Target Chamber Can Survive, with Proper Gas

Protection and Wall Temperature

*A series of BUCKY calculations have been performed of theresponse of a 6.5 m radius
graphitewall to the explosions of SOMBRERO and NRL targets. Time-of-flight dispersion of
debrisionsisimportant, especially for low gas density.

*The gasdensity and
equilibrium wall

temper atur e have been
varied to find the highest
wall temperaturethat
avoidsvaporization at a
given gas density.

3500
Chamber Radius of 6.5m -
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*Vaporization is defined
as mor e than one mono-
layer of massloss from

Max.Equilibrium Wall Temp. to Avoid
Vaporization (C)

the surface per shot. 1000 —4— SOMBRERO Target |
*Theuseof Xegasto /

: —
absorb and re-emit tar get 500 l NRL Target N
energy increasesthe
allowable wall temperature 0
substantially. 0 0.1 0.2 0.3 0.4 05 0.6

Xe Density (Torr)




For example, the first wall does not vaporize for the SOMBRERO

target in a 6.5m radius chamber filled with 0.1 torr Xe and awall
equilibrium temperature of 1450C.

*The separation in time of the 30001
InSL!ItS from the promp’F X- ray’ 0 lons absorbed by the wall
theions, and the re-radiated 2600 | (1.2MJ)+Re-radiated

energy (27MJ)

PR

2400 |

X-raysis crucia to the
survival of the wall.

2200 |

2000 |

1800 +
1600 |

*The Xe servesto absorb the
vast majority of theion
energy and almost half of the

Wall Surface Temperature (C)

prompt x-rays and slowly re- %01 Prompt

radiates the absorbed energy 1200 | 7S

e a rate determined by the e wr e we wa s
Plank emission opacity of the Time (s)

Xe.

W




First Wall Erosion and Target Heating During I njection are Competing

Concernsin Direct-Drive Laser Fusion Dry-Wall Target Chambers
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Target Injection for Laser
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Assumptions For NRL

Target

Heating Calculations

Injection velocity = 400 m/s

Target spectral reflectivity = 99%

Transport distance in chamber =
Thermal diffusivity of CH @ 18K =

AT at DT/CH interface< 1.5K
Tumbling target (symmetric hea

2 m (tube)
0.009 cm?/s

[ transfer)



The Heat
Flux
Absorbed in
the Outer
Surface of
the Target

Depends on
the FW
Temperature
and the
Target
Emissivity
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The Heat Flux Due to Aerodynamic Friction on the Target Outer
Shell is Strongly Dependant on the Chamber Gas Temperature, its

Pressure and the Velocity of the Target.

Frictional Heat Flux for a6 mm Diameter Tar get

Frictional Heat Flux for a4 mm Diameter Tar get
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The Target I njection Tube Protects the Target from
Thermal Damage During I njection

Pressure Profile in Target Injection Tube as a L
A target injection tube extends from the top of

the chamber to within 2 meters of the chamber
center.

Function of Distance from Chamber Center

gt:hamt;er : . . .
 Center It consists of a tungsten core which is He gas

cooled in a closed cycle cooling system.

The tungsten core is surrounded by a carbon
double tube assembly cooled by Xe gas,
extending 0.5m beyond the tungsten core.

s

The Xe gas after cooling the carbon tube
enters the chamber replenishing the chamber
buffer gas.

o
=

The tungsten core is stationary, but, the
carbon tube is slowly moved forward at the
rate at which the carbon evaporates.
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The target is shielded from high temperature
radiation from the first wall, and by tube

Distance Along Injection Tube (m) differential pumping avoids frictional heating
with the buffer gas along most of its
trajectory.




TARGET INJECTION TUBE DETAILS

A B
|
2
|
X
A B

PARAMETERSOF TARGET INJECTION TUBE
Material ID (cm) OD (cm) t(cm)

Thick. = 0.3 cm Inner W tube W 1.0 1.6 0.3
Thick. = 0.3 em Outer W tube w 24 3.0 0.3
nner Diameter = 2.4 Coolant Flow area He 1.6 24 0.4
““““““““ Inner Graphite tube C 3.0 34 0.2
Thick. = 0.2 cm Outer Graphite tube C 4.4 5.0 0.3
Thick. =0.3 cm Coolant Flow area Xe 34 4.4 05
Inner Diameter = 1 cm Outer Diameter = 5 cm THERMAL HYDRAULIC PARAMETERS OF TARGET INJECTION TUBE
W tube coolant Hegas
Section B-B Length of W tube(m) 4.0
Cross-Section of the Target Injection Tube Nuclear heating in W tube (Kw) 86.0
He gas pressure (atm) 80.0
Inlet temperature (K) 77
Outlet temperature (K) 300
He gas velocity (m/s) 21
Average temperature of inner W wall (K) 250
Graphite tube coolant Xe
Length of tube (m) 45

Nuclear heating in graphite tube (Kw) 48.0
Radiant heating in graphite tube (Kw) 30.0

Xe gas pressure (atm) 10
Inlet temperature (K) 300
Outlet temperature (K) 1174
Xe gas velocity (m/s) 8l

Secticgm A-A Average temperature of inner graphite tube (K) 1000
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The Neutron Irradiated Thermal Conductivity of Graphite at -1-2 dpa
Approaches the Unirradiated Value at High Temperatures
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Tritium Retention is Reduced by Increasing Irradiation Temperatures
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The Useful Lifetime of Graphiteisa Function
of the Neutron Irradiation Temperature
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It is Difficult to Find an Operational Regime for the NRL

Target in a Dry-Wall Chamber
(Assuming 1.5 K Fuel Temperature Rise)

Chamber radius of 6.5m
Tumbling Target

'2500<>-/-__________

Vaporization (C)
= N
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o o
o o

Max. Equilibrium Wall Temp. to Avoid

‘.‘ Region Excluded due to Radiation Damage Accumulation
1000 4._ 4= SOMBRERO WALL Constraint
. / e==f==N\RL WALL Constraint
>0 ‘._‘ == = SOMBRERO TARGET (200m/s, 6.5m, 0.2 Reflectivity) |
0 E = ® =NRL TARGET (400 m/s, 2m, 0.99 Reflectivity)
0 0.1 0.2 0.3 04 0.5 0.6

Xe Density (Torr)




Survivability of Targetsand C-C First
Wallsin SOMBRERO Dry Wall
Chamber with No Fill Gas

Target First Wall
SOMBRERO YE€S No

(T 2y <2,100 °C) (evapor ation,
unless T, <RT)

NRL Yes Yes

(if T_,< 1,800 C)




Survivability of Targetsand C-C First
Wallsin SOMBRERO Dry Wall
Chamber with 0.1 torr Xe Fill Gas

Target First Wall
SOMBRERO Yes Yes

(if Toy<2,200°C)  (Tew<1,500°C)
NRL No No

e Solution

Ty <<RT) (Tew<<RT))





