
Because the threat spectra angle-of-inci-
dence of the surface of the spike changes as 
the impact point is moved down the shaft 
of the spike, a parametric set of simulations 
were performed to ascertain the location-
dependent temperature profi le. Th is was ac-
complished by examining a diff erential area 
element and scaling the source intensity by 
the sine of the angle-of-incidence (which is 
90˚ — normal incidence — at the tip of the 
carbon spike). A semi-logarithmic selection 
of distances from the tip of the spike (0 µm)to 
10 µm from the tip were simulated. Incident 
ion and x-ray threat spectra are assumed to 
be parallel to the graphite planes. Chamber 
helium gas pressures of (1) 0.5 mtorr and (2) 
11.6 mtorr at 600 ˚C were simulated.
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Abstract
Th e characterization of lifetime-component ca-
pabilities of various chamber armors is a critical 
path to the development of the HAPL reactor 
design. Previous studies have examined tung-
sten as an armor material to protect the low-ac-
tivation ferritic steel fi rst wall from x-ray and 
ion damage.

Carbon-bearing materials are of interest as 
candidate armor materials due to their desirable 
thermal and mechanical properties. Th is analysis 
examines and compares several carbon-bearing 
materials: silicon carbide, graphite, engineered 
graphitic materials and carbon nanotube com-
posites.

Th e transient thermal response of these materials 
was simulated with the BUCKY 1-D radiation 
hydrodynamics code utilizing the standardized 
HAPL x-ray and ion threat spectra. Evacuated 
and buff er gas fi lled bare-walled confi gurations 
were simulated.

Th e BUCKY simulations were set up with 
the following initial conditions:

Chamber radius of 10.5 meters with he-
lium gas fi lls of 0.5 mtorr and 11.6 mtorr 
at 600 ˚C and initial wall material tem-
perature of 600 ˚C.

All ions are launched simultaneously at 
the beginning of the simulation (t = 0 s). 
For clarity, only the HAPL target alpha 
ion spectrum is shown here — the com-
plete ion source spectral data appear in 
Reference 1.

Th e start of the time-dependent x-ray 
pulse is concurrent with the launch of 
the ions (t = 0 s). Th e x-ray pulse inten-
sity is modeled as a gaussian distribu-
tion with a full-width half-maximum of 
170 ps¹. Th e x-ray pulse ends at 750 ps.

2-T SESAME equation-of-state data 
were used for the helium gas in the 
chamber². YAC non-LTE opacities are 
used for radiation transport for all ma-
terials³.

Th ermal conductivity and specifi c heat 
data for tungsten were obtained from the 
NIST Standard Reference Database⁴⁵.
Graphite specifi c heat and thermal con-
ductivity data were obtained from the 
NIST Standard Reference Database⁵⁶.
Silicon carbide thermal conductivity and 
specifi c heat data were obtained from the 
ITER Material Properties Handbook⁷.

Previous research eff orts have focused on 
the surface temperature response and life-
time estimates for tungsten armor protect-
ing a low-activation ferritic steel fi rst wall¹.
Th e tungsten results will be reproduced here 
to provide a basis for comparison with the 
carbon-bearing material simulation results.

All simulations presented here assume that 
materials are in the unirradiated state.

CVD Silicon Carbide
Chemical vapor deposition (CVD) silicon 
carbide with <10 µm grain size was simulat-
ed. Th is material confi guration was chosen 
because of the isotropic nature of the ther-
mal conductivity data available.

Two pyrolytic graphite simulations were per-
formed: (1) one with the incident ions and 
x-rays parallel to the graphite planes and (2) 
a second with the incident ions and x-rays 
perpendicular to the graphite planes — re-
sulting in the best- and worst-case scenarios 
due to the anisotropic nature of the thermal 
conductivity of graphite.

Carbon Nanotube Reinforced 

Th e carbon nanotube reinforced composite 
examined was composed of single-walled 
carbon nanotubes (SWCNT) with random 
orientation embedded in a CVD silicon car-
bide matrix. A simple mixing model was used 
to calculate the temperature-dependent ther-
mal conductivity and specifi c heat data⁹¹⁰.

Th e composite modeled assumed a mass 
fraction of 20% carbon nanotubes and the 
remaining 80% consisting of CVD silicon 
carbide. 

Th e engineered graphite wall analyzed was 
the ESLI carbon spike sheet model⁸. Th e 
chamber fi rst wall would be lined with a 
graphite substrate to which a layer of car-
bon spikes would be attached. An individual 
spike is 1 mm long with a 35 µm diameter 
base.

For this analysis, the spikes were arranged in 
a perpendicular grid with the bases in contact 
with each other. Th is confi guration results in 
a surface area multiplication of ~328.5 over 
that of a smooth graphite armor surface.


