Temperature Response and Ion Deposition in the 1 mm Tungsten Armor Layer for the 10.5 m HAPL Target Chamber

T.A. Heltemes, D.R. Boris and M. Fatenejad, G.A. Moses HAPL Workshop Laboratory for Laser Energetics, Rochester NY November 8-9, 2005

- BUCKY simulation for a xenon gas pressure of 8 µtorr was run, using the threat spectra from the "Perkins" empty foam target and was compared to the 8 mtorr xenon case.
- The tungsten armor temperature profile and ion deposition depths for each ion species was computed using the new BUCKY integrated chamber-wall model and ion transport model.
- Ion deposition results were compared to SRIM simulations to validate the BUCKY ion stopping model.
- Preliminary results obtained for most recent coated target threat spectra.
- Work continues on a BUCKY kinetic/hydro model.

BUCKY radiation hydrodynamics simulation parameters

- Perkins x-ray and ion spectra were used as inputs into a chamber consisting of a xenon gas and tungsten armor
- The initial gas temperature was 4000 K and the initial armor temperature was 1000 K
- Two Xe gas pressures were simulated, 8 mtorr and 8 µtorr
- SESAME EOS data were used for tungsten and xenon
- YAC LTE opacities were used for tungsten and non-LTE opacities for xenon

The BUCKY simulation was performed using the empty foam target ion spectra developed by LLNL

- Perkins fast and slow ion spectra for the 340 MJ empty foam target were used.
- The ion spectra are the results of a LASNEX target simulation at t = 100 ns.
- Ion species modeled in BUCKY: ¹H, ²H, ³H, ³He, ⁴He, ¹²C
- All of the ions in the BUCKY simulation were launched at t = 0 s

Ion Species	LLNL	BUCKY	
-	Ion Tally	Ion Tally	
¹ H	1.047E+20	1.0466E+20	
² H	6.967E+20	6.9669E+20	
³ Н	7.036E+20	7.0363E+20	
³ He	2.425E+19	2.4247E+19	
⁴ He	7.767E+19	7.7668E+19	
С	1.023E+20	1.0233E+20	

lon	LLNL	LLNL	BUCKY	BUCKY
Species	Slow lons [MJ]	Fast lons [MJ]	Slow lons [MJ]	Fast lons [MJ]
¹ H	8.114E-01	7.382E+00	8.1230E-01	7.3819E+00
² H	1.221E+01	7.382E+00	1.2213E+01	7.3819E+00
³ Н	1.717E+01	7.166E+00	1.7167E+01	7.1655E+00
³ He	2.252E-02	7.382E+00	2.2523E-02	7.3819E+00
⁴He	1.519E+00	7.382E+00	1.5187E+00	7.3819E+00
С	8.211E+00	5.493E+00	8.2112E+00	5.2277E+00
Total 1	3.994E+01	4.192E+01	3.9945E+01	4.1921E+01
Total 2	8.186E+01		8.1866E+01	

The BUCKY ion splitting model was incorporated to reduce non-physical temperature spikes

- Impinging ions were split once they passed a boundary at 7.5 mm from the tungsten wall.
- The ions were split into 500 evenly spaced bunches to provide a more continuous impingement on the tungsten.
- Ions were overlapped by 25% with the next ion bunch to eliminate "spikes" from time-of-flight ion spreading.
- Implementing these features yields a relatively smooth temperature profile.

The x-ray spectrum used in the BUCKY simulation was based on Perkins' 3temperature blackbody curve and a simulated BUCKY target x-ray pulse

- Perkins 3-temperature blackbody x-ray spectrum was used to generate BUCKY x-ray profile.
- 170 ps FWHM Gaussian pulse was used to simulate the time dependence of the fusion burn x-rays.
- The simulated x-ray pulse begins at t = 0.000 ns and ends at t = 0.765 ns.
- The x-ray pulse was divided into 100 energy group histogram with 19 time bins

The thermodynamic properties of tungsten were simulated using standardized data sets

Tungsten Thermal Conductivity

Specific Heat of Tungsten

- NIST values were used for T_{melt} and T_{boil}, 3680 K and 5930 K, respectively.
- ITER Materials Handbook data was used for thermal conductivity, k(T).
- NIST Shomate Equation was used for heat capacity, C_p(T).

The results of the simulation show 3 temperature peaks: an x-ray peak, fast ion peak and slow ion peak

Temperature by Depth into Tungsten Armor for 8 µtorr Xe Buffer Gas Simulation

• Magnetic intervention can reduce the ion peaks, but not the x-ray peak.

The results of the simulation reveal the ion energy deposition characteristics and stopping power of the xenon gas

Incident	8Źntorr Xe Buffer Gas		8ʵtorr Xe Buffer Gas	
lon	Number of lons	Percentage of	Number of lons	Percentage of
Species	Thermalized	Incident lons	Thermalized	Incident lons
¹ H	9.3145E+18	8.90%	0.0000E+00	0.00%
² H	8.0677E+19	11.58%	0.0000E+00	0.00%
³ Н	3.9956E+19	5.68%	0.0000E+00	0.00%
³ He	6.1327E+17	2.53%	0.0000E+00	0.00%
⁴He	7.6584E+18	9.86%	0.0000E+00	0.00%
С	5.2632E+19	51.43%	0.0000E+00	0.00%

Cumulative Target Threat Ion Energy Deposition for the Empty Foam Target

- Even at 8 mtorr, a significant number of ions are thermalized in the Xe buffer gas.
- At 8 µtorr, no ions are thermalized in the gas, which should be the case for a chamber pressure equivalent to a vacuum.
- The amount of energy deposited in the wall is greatly influenced by the amount of gas in the chamber.
- 8 mtorr of xenon in the chamber reduces the amount of ion energy depositing in the tungsten armor by (~25%) vs. vacuum conditions.

¹H (Proton) Ion Deposition in the tungsten armor for 8 µtorr and 8 mtorr xenon gas pressures

^{2}H (Deuteron) Ion Deposition in the tungsten armor for 8 $\mu torr$ and 8 mtorr xenon gas pressures

^{3}H (Triton) Ion Deposition in the tungsten armor for 8 $\mu torr$ and 8 mtorr xenon gas pressures

- SRIM results have broader deposition range due to straggling that is absent in BUCKY ion slowing down model.
- Agreement is otherwise good for the purpose of scoping calculations.
- A vacuum target chamber results in 70% of the tritium embedding in the tungsten armor to depths up to 100 µm on each shot. →n_T=4x10²³ cm⁻³ per FPY = 10x solid!
- How much of the tritium diffuses out and over what time scale?
- What other effects are created by ions embedding in the armor?

³He Ion Deposition in the tungsten armor for 8 µtorr and 8 mtorr xenon gas pressures

^4He (Alpha) Ion Deposition in the tungsten armor for 8 $\mu torr$ and 8 mtorr xenon gas pressures

^{12}C (Carbon) Ion Deposition in the tungsten armor for 8 µtorr and 8 mtorr xenon gas pressures

Tungsten carbide formation? Modification of properties?

Preliminary temperature results from the palladium-gold coated target simulation have been computed

MADISON

- BUCKY simulation for a xenon gas pressure of 8 µtorr was run, using the threat spectra from the "Perkins" empty foam target and was compared to the 8 mtorr xenon case.
- The tungsten armor temperature profile and ion deposition depths for each ion species was computed using the new BUCKY integrated chamber-wall model and ion transport model.
- Ion deposition results were compared to SRIM simulations to validate the BUCKY ion stopping model.
- Preliminary results obtained for most recent coated target threat spectra.
- Work continues on a BUCKY kinetic/hydro model.

J.F. Santarius and G.A. Moses

We use a simple lagrangian hydro model of the HAPL plasma expansion to test long mean free path models

🗆 Mass density

- Model (pure hydrodynamics) equations:
 - 1) $\partial u/\partial t + \partial p/\partial m = 0$
 - 2) $\partial e/\partial t + p(\partial V/\partial t) = 0$
- Solved by finite differences
- Initial conditions shown above

Simple lagrangian model indicates that kinetic effects are important for HAPL plasmas

Dean free path / zone thickness

Temperature

Zone overlap will be modeled by conserving zone momenta when adjusting radii

Equations

In[132]:=

```
eqp1 = m_1 u_1 = m_1 v_1 + \delta p;
```

ln[133]:=

 $eqp2 = m_2 u_2 = m_2 v_2 - \delta p;$

In[136]:=

eqs1 = $z_1 = r_2 + v_1 \delta t$;

 $eqs2 = z_2 = r_1 + v_2 \delta t;$

```
eqs3 = z_3 = r_3 + v_1 \delta t;
```

```
eqs4 = z_3 == r_2 + v_2 \delta t;
```

Zone overlap resolution

ln[146]:=

eqp =
$$\frac{(\mathbf{s}_2^3 - \mathbf{z}_2^3)}{(\mathbf{z}_4^3 - \mathbf{z}_2^3)} \mathbf{m}_1 \mathbf{v}_1 = \frac{(\mathbf{z}_3^3 - \mathbf{s}_2^3)}{(\mathbf{z}_3^3 - \mathbf{z}_1^3)} \mathbf{m}_2 \mathbf{v}_2;$$

ln[147]:=

 $sls2 = Solve[eqp, s_2];$

In[152]:=

sls2[[1]]

Out[226]=

$$\frac{(m_1 v_1 z_2^3 (-z_1^3 + z_3^3) + m_2 v_2 z_3^3 (-z_2^3 + z_4^3))^{1/3}}{(m_1 v_1 (-z_1^3 + z_3^3) + m_2 v_2 (-z_2^3 + z_4^3))^{1/3}}$$

For a momentum change δp , the middle radius, s1, is chosen by equating the momentum shifted when resolving the overlap.

