Generation of X-ray and Ion Threat Spectra for the Fusion Test Facility using the BUCKY 1-D Radiation Hydrodynamics Code

T.A. Heltemes and G.A. Moses 17th Topical Meeting on the Technology of Fusion Energy Material Component and Test Facilities 15 November 2006 Laser Energy: 500 kJ

Fusion Power: 30–150 MW

Rep Rate: 5–10 Hz

Chamber Radius: 5m

(source: NRL)

- KrF Driver: 500 kJ at 5 Hz
- Hot Spot Conditions
 - ♦ T = 10 keV
 - $\rho R = 0.3 \text{ g/cm}^2$
 - $V_{max} = 4.1 \times 10^7 \text{ cm/s}$
- Target Gain: ~60
- Target Yield: 29.75 MJ
- Total target mass: 1.167 mg

BUCKY was used to simulate the thermal response of the test module armor materials using a scaled-down 365MJ HAPL Target

			$-\lambda r - f'$	Z6 um
1.E+17 1.E+15 1.E+13	Parameter	HAPL target, full scale	HAPL target with 0.0815 multiplier	- y jan 10
0) 1.E+11 1.E+09 1.E+07	Driver Energy (MJ)	2.459 MJ		
1.E+05 1.E+03 1.E+01 1.E-01	Target Gain	148.3		hell cm³) n
10	Charged Particle Yield (MJ)	87.854	7.160	
20 - 20 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 1	Neutron Yield (MJ)	274.3	22.355	
	X-ray Yield (MJ)	4.937	0.402	
X-ray	X-ray Pulse FWHM (ps)	170		6 0.7 0.8
	X-ray Energy (kev)		Simulation Time (IIS)	-

Results of the scaled HAPL target give us a baseline to compare our target simulation results against

BUCKY was used to simulate the FTF target at the point of ignition with an estimated set of initial conditions

- A radial build was created using densities at the ignition point of the HAPL target
- The hot spot density was determined using an initial condition of $\rho R = 0.4$ gm/cm²
- The pure DT zones were assigned an inward velocity of 6.4x10⁷ cm/s and all other materials were assigned and outward velocity of 6.4x10⁷ cm/s

Ignition temperatures were assigned

- ♦ Hot spot DT = 4 keV
- ◆ DT = 800 eV
- ◆ DT+CH Foam = 600 eV
- ◆ CH = 400 eV
- ◆ Au = 200eV
- The target was bounded by a global temperature condition of 1 eV and pressure condition of 6.67 mtorr to represent the xenon chamber gas (0.5 mtorr at 0°C)

The BUCKY simulation was able to achieve ignition using the specified initial conditions

- The compressed FTF target achieved the following yields:
 - Total CP: 5.003 MJ
 - Total n: 20.124 MJ
 - ◆ Total X-ray: 2.885 MJ
- The fusion pulse FWHM was:
 - Charged particles: 22 ps
 - Neutrons: 22 ps
 - X-rays: 24 ps

Parameter	HAPL 365 MJ Target	FTF 29.75 MJ Target
Target mass (mg)	8.002	1.167
Driver energy to mass ratio (MJ/mg)	0.307	0.428
Target gain to mass ratio (1/mg)	18.533	25.493
Charged particle yield to mass ratio (MJ/mg)	10.979	4.287
Neutron yield to mass ratio (MJ/mg)	34.279	17.244
X-ray yield to mass ratio (MJ/mg)	0.617	2.472
X-ray pulse FWHM to mass ratio (ps/mg)	21.2	20.6
Total yield to mass ratio (MJ/mg)	45.625	25.493!

How well does the BUCKY spectra compare with the scaled HAPL target spectra?

10

How well does the BUCKY spectra compare with the scaled HAPL target spectra?

Palladium/Gold Spectrum

The resulting spectra were used in the chamber simulation to find the temperature rise on the surface of the module armor materials

12

- The Compressed FTF target simulations carried out using the BUCKY 1-D radiation hydrodynamics lead to some insights about the FTF target
 - Linear scaling of the HAPL target spectra may not be a valid assumption to apply to the FTF target design
 - The FWHM of the X-ray pulse for the two target designs are comparable on a per milligram basis, about 21 ps/mg for both designs
- Comparison between the scaled HAPL target (29.75/365 \approx 0.0815) and FTF target ion and X-ray spectra show
 - The ion spectra from the BUCKY FTF simulation have narrower range of ion kinetic energy and lower average energy compared to the scaled HAPL target spectra
 - The X-ray spectrum from the BUCKY FTF simulation has a wider range of X-ray energy and has two distinct peaks
- Comparison between the scaled HAPL target and FTF target module armor heating show
 - For the 1m module, tungsten is not desirable as an armor material
 - For the 2m module, either tungsten or silicon carbide may be used

- Change the gold opacity data from the LTE model to the non-LTE model
- Run a BUCKY simulation of the "cold" FTF target with the proposed KrF laser driver power profile
- Modify the output to include ³He ion information
- Modify the outer high-Z layer to a 50/50 Pd/Au mixture
- Run the cold FTF target simulation integrated with the chamber simulation
 - Run for three inert buffer gases: Helium, Argon and Xenon
 - Run with tungsten, silicon carbide and graphite as armor materials
- Compare the results of the cold 1D BUCKY target simulation to a cold 2D target simulation