3-D Assessment of Neutron Streaming through Inboard Assembly Gaps

Tim D. Bohm
Laila El-Guebaly
University of Wisconsin-Madison Contributors:
S. Malang, X. Wang, R. Raffray (UCSD)
L. Waganer (Boeing)

- Introduction
- 3-D Model used
- Results
- Conclusions

Introduction

- Assembly gaps between modules allow increased levels of radiation to reach components
- Radiation streaming through these gaps needs assessment to be sure components are well protected
- Previous Work:
- T.D. Bohm, M.E. Sawan, P. Wilson, "Radiation Streaming in Gaps between ITER First Wall Shield Modules", Fusion Science and Technology, in press 2009
- L.A. El-Guebaly, M.E. Sawan, "Shielding Analysis for ITER with Impact of Assembly Gaps and Design Inhomogeneities", Proc. 8 ${ }^{\text {th }}$ International Conference on Radiation Shielding, Arlington, Texas, 24-28 April 1994, p. 1047, 1994

Introduction continued

- During operation, gaps will close due to thermal expansion and neutron induced swelling
- Will examine range of gap sizes from no gap to some reasonable maximum gap size

ARIES 3-D Inboard Model

Cross Section of ARIES-AT Power Core Configuration

- Basis is ARIES-AT DCLL radial build by El-Guebaly (1/21/2009 presentation)
- MCNPX v27a 3-D Monte Carlo transport code
- FENDL v2.1 cross section library

3-D Model

- 3-D partially homogenized model
- 11.25° sector ($1 / 2$ module) ($\mathrm{w} /$ reflecting boundaries)
- Vertical extent 100 cm (w/ reflecting boundaries)
- Uniform volumetric source $\mathrm{r}=460-625 \mathrm{~cm}$
- IB NWL = 3.4 MW/m²

No gap model

MADISON

- Sidewalls included
- Manifolds included

Straight gap model

-1, 2 cm gaps examined

- Gap reaches vacuum vessel

Stepped gap model
 WISCONSIN

No gap-Overall IB flux levels

- Almost 6 orders of magnitude attenuation
- Increased levels behind He manifolds (e.g. WP ~2x)

dpa Shield Front (2 cm gaps)

- Both gaps lead to strong peaking
- Straight Gap (gap/nogap) $\max =1.3$
- Stepped Gap (gap/nogap) $\max =1.1$

All cases exceed the dpa limit so the front part of shield must be replaceable

dpa Shield Front (1 cm gaps)

- Reduced dpa levels and peaking compared to 2 cm gaps
- Still exceed the limit

All cases exceed the dpa limit so the front part of the shield must be replaceable

He production Manifold Front (2 cm gaps)

WISCONSIN

- Both gaps lead to very strong peaking
- Straight Gap (gap/nogap) $\max =30$
- Stepped Gap (gap/nogap) $\max =8$
- Stepped gap shifts peak
Manifold front

All cases exceed the He production limit so the front part of the manifold is not reweldable (note: new design requires no manifold on IB)

He production Manifold Front (1 cm gaps)

WISCONSIN

- Reduced He levels and peaking compared to 2 cm gaps

All cases exceed the He production limit so the front part of the manifold is not reweldable

He production Vac Vessel Front (2 cm gaps) WISCONSIN

- Straight gap leads to very strong peaking
- (gap/nogap) max $=900$
- Stepped gap not as strong
- (gap/nogap) $\max =1.7$

Vacuum Vessel front

The stepped gap with WC shield block meets the He production limits so the VV is reweldable

He production Vac Vessel Front (1 cm gaps)

WISCONSIN madison

- Reduced He levels and peaking compared to 2 cm gaps

Vacuum Vessel front

The stepped gap with WC shield block meets the He production limits so the VV is reweldable

Fast Fluence Winding Pack Front (2 cm gaps)

- Smoother peaks due to shielding effect of VV
- Straight gap has significant peaking
- (gap/nogap) $\max =9.5$

Winding Pack front

The stepped gap with WC shield block meets the winding pack fast fluence limit

$\frac{\text { MHE uniyersity }}{\text { WISCONSIN }}$
 - Reduced fluence levels and peaking compared with 2 cm gap

Fast Fluence Winding Pack Front (1 cm gaps)

Winding Pack front

The stepped gap with WC shield block meets the winding pack fast fluence limit

Heating in WC Shield Block (2 cm stepped gap)

 WISCONSINMADISON

Ave. $1.0 \mathrm{~W} / \mathrm{cm}^{3} \quad$ Ave $6.2 \mathrm{~W} / \mathrm{cm}^{3}$

Ave 3.1 W/cm ${ }^{3}$

Per S. Malang, radiative cooling is feasible if average heating is below $15 \mathrm{~W} / \mathrm{cm}^{3}$

dpa in WC Shield Block (2 cm gap)

$17 \mathrm{dpa} / \mathrm{FPY}$

$2.6 \mathrm{dpa} / \mathrm{FPY}$
Materials experts need to decide if WC or W can be used as a structural component

Conclusions

- Straight gaps allow too much radiation to reach components on the IB side for the ARIES-AT DCLL design
- Stepped gaps with WC shield blocks are needed to protect the IB components
- Will need to account for uncertainty in nuclear data
- Safety factor used with 1-D models should be adjusted accordingly

