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Research Overview

• The chamber 
thermodynamic response 
was modeled using 3 
independent 1-D 
simulations

• The simulation directions 
were chosen along the 
cylindrical coordinate 
axes: +z, –z and r

• The simulation results 
were compared to a 
simple analytical model in 
order to check the validity 
of the BUCKY vaporization 
estimate

• Previous BUCKY 
simulations either treated 
the entire chamber as a 
plasma and solid first wall 
or two separate simulated 
systems with a common 
interface

• A new model was recently 
added to BUCKY to 
account for the presence 
of solid and liquid phase 
materials in a fusion 
reactor chamber 
simulation

• The implementation of the 
new model allows BUCKY 
to perform integrated 
target-chamber 
simulations for the first 
time
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Analytical Vaporization Model

The analytical vaporization model assumes that the flibe simply conserves 
energy, yielding the maximum amount of vaporization possible
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BUCKY Simulation Setup

• The original target as 
provided by LANL had a 
yield of 5 GJ, which was 
lowered to the 3 GJ 
specification by preventing 
DT burn in the outer fuel 
zones

• The resulting yield was 
3.0275 GJ, which is what 
was used in the analytical 
equations to determine 
the maximum amount of
flibe vaporization

• +z simulation adds a 
100 µm Steel (Fe) layer to 
represent the RTL material 
and a flibe foam at 8% 
solid density

• –z simulation adds a 
100 cm layer of argon gas 
at 10 torr and a liquid flibe
layer at 100% density to 
represent the pool at the 
bottom of the reactor 
chamber 

• r simulation adds a 70 cm 
layer of argon gas at 
10 torr and a liquid flibe
layer at 50% density to 
represent the liquid jets in 
the reactor chamber
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Simulation +z Animation
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Simulation Results

At 80 µs, the simulations were analyzed to provide a revised 
estimate of material vaporization.
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Simulation Results

• As expected, the 
BUCKY simulations 
predict less flibe 
vaporization than the 
simple analytical 
model

• The reduced flibe 
vaporization is due to 
the lack of neutronic
effects in BUCKY, 
which are only utilized 
in the DT fuel region

• The simulation results 
are valid for times 
when the outward 
blast and energy 
transfer remain nearly 
spherical

• Zones of phase change 
were discovered in the 
BUCKY output, 
verifying that melting 
and boiling were 
occurring properly in 
the code
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Future Work

• Extend the 
simulation time to 
the millisecond 
regime so we can  
obtain the 
vaporization radii 
directly from the 
BUCKY output

• Add capability to 
model mechanical 
shock in the liquid 
and solid zones

• Improve the 
Equation-of-State to 
more accurately 
model the thermal 
and mechanical 
response of an 
open-celled metallic 
foam

• Model individual 
liquid flibe jets 
instead of a 
homogenized flibe 
zone

• Implement an 
implicit differencing 
scheme and/or 
rezoning capability 
to speed up post-
burn hydrodynamic 
simulation by 
relaxing the CFL 
condition

• Use the simulation 
data to create a 
dynamic 2-D 
graphical model for 
chamber thermal 
response
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