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Symmetrical
Boundary
Conditions

An infinite array of five rows of cooling tubes is 
numerically modeled as five rows of half-cylinders 
with symmetrical boundary conditions at the sides of 
the domain.  The pitch ratio is defined as δ=L/H.  The 
cylinders are modeled with reflective boundary 
conditions.  The domain is 0.49 m in length and the 
spatial resolution is ∆x=∆y=0.25 mm.

Introduction

Designs of inertial fusion reactor chambers, such as the LIBRA-SP, 
utilize rows of cooling tubes to absorb energy from the fusion 
reaction as well as target debris.  The reaction also results in a 
hydrodynamic shock wave in the low pressure blanket gas that 
spherically radiates from the center of the chamber out to the rows 
of cooling tubes.  A shock tube has been used to model 
experimentally the interaction of a shock wave with two rows of 
cooling tubes.  The shock tube studies have been repeated in a 
computational environment and the numerical results compare 
favorably with the experiments.  The numerical studies are now 
extended to a bank of cylinders, consisting of five rows, with the 
goal of understanding the most favorable geometrical spacing of 
the cooling tubes for structural design purposes.
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• Vertical Orientation
• Large Internal Square
• Cross-Section (25 cm square)
• Total Length=9.3 m
• Driven Length=6.8 m
• Structural Capacity 20 MPa
• Modular Construction
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Cylinders used to model cooling 
tubes have flush mounted pressure 
transducers every 30 degrees around 
the circumference.

Test D: δ=0.924; R=2.95 cm; H=5.48 cm. Test C: δ=0.849; R=3.395 cm; H=5.9 cm. Test B: δ=0.924; R=3.175 cm; H=5.9 cm.  Test A: δ=1.0; R=2.95 cm; H=5.9 cm. 
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Shadowgraph shock diffraction patterns comparing experimental 
results (left) with numerical results (right) for a M=2.75 shock in 
atmospheric pressure argon.  The shock is traveling from the top to 
the bottom and time zero is taken as the time when the shock is 
incident on the upper row of cylinders.  Diffraction patterns 
compare favorably for the first two times but discrepancies arise in 
the later time image due to viscous effects and the effect of the 
cylinder support structure.

The vertical forces on the upper cylinder (UC) and 
lower, center cylinder (CC) are determined by 
integrating the pressure traces (taken at the discrete 
angular locations) around the cylinder.  The shock 
is strengthened as it passes through the gap 
between the two upper cylinders resulting in a 
higher vertical force on the center cylinder.  The 
numerical results compare favorably with the 
experimental, allowing for further numerical 
studies in regimes that can’t be studied 
experimentally with the current shock tube.

Key Features of the Numerical Code

The code solves the Euler equations in two-dimensions using an exact Riemann solver and a fourth-order accurate 
(spatial) piece-wise spline method (PSM).  The Euler equations in conservative form are:

where the conservative variables (U) and fluxes (F and G) are:

The total energy per unit volume is                             and the calorically perfect gas model is used: 

A splitting scheme is employed for the system in two spatial dimensions and  the tangential velocity component, 
v(u) in the x-sweep(y-sweep), is passively advected with the normal velocity component, u(v). A two-step process 
shown is used to accomplish the integration from time n to n+1 using a Godunov scheme:

The PSM and following  slope limiters, similar to those developed by Ren et al. (1996), are used for the 
data reconstruction of the conservative variables for the local Riemann problem solutions at cell interfaces to 
achieve fourth order (spatial) accuracy:

where m, M and M(3) are the first, second and third derivatives of the conserved variable.  The reconstructed 
variables are used with the Pike exact Riemann solver to evaluate the flux terms at the interface.
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A numerical shadowgraph image when the shock has 
reached the midpoint of the fifth row of cylinders.
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Results and Discussion

Four test cases, A-D, are presented with vertical force traces on each of the five rows of cylinders for a M=2.75 shock in 
argon.  In each of the plots, the uppermost cylinder is labeled 1 while the lowermost is 5.  It is seen from the force plots that 
the geometry of the cylinder placement has a strong effect on the maximum force on the cylinders.  In case A the maximum 
force occurs on the second bank of cylinders while for cases B, C and D the maximum force occurs on the third row of 
cylinders.  The maximum force seen in all of the simulations is for the third row of cylinders in case C which is most likely 
due to the fact that the radius of each cylinder is largest in this case.  In all cases, the first cylinder bank is subjected to the 
lowest vertical force loading due to the shock strengthening that occurs as the shock wave traverses the gaps between the 
cylinders.  The shock strengthening effect is seen to lessen as the shock reaches the fourth and fifth rows of cylinders due to 
the numerous shock reflections that have occurred by this later time.  For the actual cooling tubes in an IFE reaction chamber 
it will be necessary to consider the force loading on each row in the structural design, that is, if the geometry of case A is used 
then the second row will have to be stronger than the others, while in cases B-D, the third row of tubes would require the 
highest strength.
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The vertical force is calculated using the following equation 
where W is the length of the cylinder:


