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Outline of Presentation

• Background of UW-SNL Collaborations

• ICF Physics and Near Term Z-Pinch Related Research
½Computer Simulations of X-Ray Neutron Output from X-1 Targets
½Computer Simulation of Hole Closure in Z-Pinch Hohlraums
½Computer Simulations of Debris Production from Current Return Cans
½Computer Simulations of Al Contained EOS Experiments
½Experiments on Z to Simulate IFE Target Chamber Phenomena
½Experiments on Z of Radiation Transport in Foams

• Engineering and Intermediate Term Z-Pinch Structural Related Research

• IFE Related Research

½Preliminary Finite Element Structural Modeling and Analysis of Z
½Design of a System to Catch and Contain Debris from EOS Experiments
½Shielding for the X-1 Target Chamber
½Activation of X-1 Target Chamber
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There Has Been a Long and Productive History of Collaboration 
Between Sandia and the University of Wisconsin

Start Date Duration Project

1978 1 Cavity and First Wall Design for REB Fusion Reactors

1979 2 Cavity and First Wall Design for Non-Symmetric Blast Waves

1981 1 LIB Fusion Reactor Design

1982 5 LIF Target Development Facility

1983 1 Blast Wave Phenomena in LIF Target Chambers

1983 1 PBFA-II Coupled n & γ Transport Calculations

1986 1 Probability Risk Assessment-Recovery Action Effects

1987 10 LIBRA Commercial Reactor Fusion Design (with KfK)

1991 5 Theory of Emission Spectra from LIB Created Plasmas

1992 1 Computer Simulation of Tokamak Disruptions

1993 1 Jupiter Project

1994 1 LIB Channel Analysis

1996 1 Spectroscopy Analysis of Dynamic Hohlraums

1997 3* X-1, ZX High Yield Test Chamber Design and Analysis

1999 2* IFE Power Concepts for Z-Pinch Technology

* Current
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Poukey, J. W. 1966
Chaffin, R. C. 1967
Kuswa, G. W. 1970
Hunter, T. O. 1978
Whitley, J. B. 1978
Watson, R. D. 1981
O’Brien, K. 1985
Pong, L. 1985
Croessmann, C. D. 1986
Bartel, T. 1987
Sniegowski, J. J. 1991
Castro, J. P. 1995
Crowell, J. 1999 (Livermore, CA)

University of Wisconsin Fusion Ph.D. Graduates Employed by
Sandia National Laboratories
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ICF Physics and Near Term ZICF Physics and Near Term Z--pinch Related Research at pinch Related Research at 
The University of Wisconsin The University of Wisconsin 

R.R. Peterson
University of Wisconsin-Madison

Sandia Sandia National LaboratoriesNational Laboratories
November 6, 2000November 6, 2000
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ICF Physics and Near Term Z-pinch Related Projects at The 
University of Wisconsin 

1.1. Computer Simulations of XComputer Simulations of X--Ray Neutron Output from XRay Neutron Output from X--1 Targets1 Targets
2. Computer Simulations of NIF Indirect Drive Capsules
3.3. Computer Simulations of Hole Closure in ZComputer Simulations of Hole Closure in Z--Pinch Hohlraum Pinch Hohlraum 

Experiments on ZExperiments on Z
4.4. Computer Simulations of Debris Production From Current Return CaComputer Simulations of Debris Production From Current Return Cans ns 

in Wire Array Implosionsin Wire Array Implosions**

5.5. Computer Simulations of Aluminum Contained EOS ExperimentsComputer Simulations of Aluminum Contained EOS Experiments
6.6. Experiments on Z to Simulate IFE Target Chamber Phenomena*Experiments on Z to Simulate IFE Target Chamber Phenomena*
7.7. Radiation Transport in Foams: Experiments and SimulationsRadiation Transport in Foams: Experiments and Simulations
8. Time-resolved X-ray Imaging Diagnostic (EST) on Z
9. Modeling of Response of Materials to Ion Beams 

* Non-SNL funding
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Computer Simulations of XComputer Simulations of X--Ray Neutron Output from XRay Neutron Output from X--1 1 
TargetsTargets

R.R. Peterson and D.A. Haynes
University of Wisconsin-Madison

Sandia Sandia National LaboratoriesNational Laboratories
November 6, 2000November 6, 2000
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Study of X-1 Indirect-Drive Target With 1-D 
BUCKY Code
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• 1-D Lagrangian MHD (spherical, cylindrical or slab).

BUCKY is a Flexible 1-D Radiation-Hydrodynamics 
Computer Code

• Thermal conduction with diffusion.
• Applied electrical current with magnetic field and pressure calculation.
• Radiation transport with multi-group flux-limited diffusion, method of short 

characteristics, and variable Eddington.

• Non-LTE CRE line transport.
• Opacities and equations of state from EOSOPA or SESAME.
• Equilibrium electrical conductivities
• Thermonuclear burn (DT,DD,DHe3) with in-flight reactions.
• Fusion product transport; time-dependent charged particle tracking, neutron 

energy deposition.

•• Applied energy sources: time and energy dependent ions, electrons, and x-rays.
• Moderate energy density physics: melting, vaporization, and thermal conduction 

in solids and liquids.
• Benchmarking: x-ray burn-through and shock experiments on Nova and Omega, 

x-ray vaporization, RHEPP melting and vaporization, PBFA-II Kα emission, …
• Platforms: UNIX, PC, MAC
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X-ray Emission from Indirect Drive (X-1) Targets 
Due to Collisions Between Expanding Shells
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Output X-ray Spectrum: Sum of 3 Blackbody spectra
157 ns: 14 eV, 177 keV 160 ns: 709 eV, 4 keV, 177 keV
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159 ns: 354 eV, 6 keV, 100 keV 161.5 ns 325 eV 6 keV, 177 keV

Output X-rays are released in two 
pulses over about 5 ns.
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Computer Simulations of Hole Closure in ZComputer Simulations of Hole Closure in Z--Pinch Hohlraum Pinch Hohlraum 
Experiments on ZExperiments on Z

Sandia Sandia National LaboratoriesNational Laboratories
November 6, 2000November 6, 2000

R.R. Peterson
University of Wisconsin-Madison
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RAGE Target Simulations of Z Hohlraums

Pinch X-Rays

Wall-Emitted
X-Rays

Bolometer

Foam Plug
in Diagnostic Hole4x4 Static Hohlraum

R

Z

R is parallel to the Hohlraum 
Radius, but is the axial 
direction through the hole in 
the RAGE simulation.
Z is parallel to the Hohlraum 
axis, but is the hole radial axis 
in the Rage simulation.
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RAGE is a 1, 2, or 3-D AMR Radiation 
Hydrodynamics Computer Code

• Hydrodynamics with an Adaptive Mesh Refinement  
(AMR) method.

• Radiation Transport by Grey Diffusion

• Applied temperature and energy sources.

• Opacities and equations of state from SESAME or 
analytic models.

• Platforms: LANL Cray or ASCI.

• Post-Processing with POP
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RAGE Target Simulations Performed for 
Two Drive Temperature Histories

•Radiation temperature was 
originally estimated from 
Bolometer measurements on 
shot Z442 by assume 
diagnostics hole radius of 1.4 
mm.

•Observed radiation is from 
Wall, so must divide by albedo 
to get drive temperature.

•Original drive temperature 
peaks at 146 eV.

•Other diagnostics (shock 
break-out) suggest a peak 
drive temperature of 190 eV.

•Time is measured from Marx 
trigger.
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Geometry Used RAGE Target Simulations
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•RAGE mesh
•Much finer at 
material interfaces 
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Mass Density Contours Show Jetting from 
Corner
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Opacity Contours Show Blockage of Hole Due 
Blow-off From Top and Jetting From Corner
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Diagnostics Hole Closure is Due to Gold Blow-off 
from Edge of Hole and Top of Hohlraum
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Foam Plug has Little Effect on 146 eV 
Hohlraum Diagnostics Hole

•For a peak radiation drive 
temperature of 146 eV, the 
effective hole radius is the 
same with and without a foam 
plug.

•Hole closure is much more 
pronounced for a 190 eV 
drive temperature, with a 
foam plug



11/9/00 23

Fusion Technology Institute University of Wisconsin - Madison

R.R. Peterson, D.C.. Kammer, G.L. Kulcinski rrpeter@engr.wisc.eduSNL Update

Time (ns )

P
o

w
er

R
ad

ia
te

d
O

u
tH

o
le

(T
W

)

2547 2548 2549 2550
0

0.5

1

1.5

2

2.5

3

146 e V with foam
190 e V with foam
Me as ure d

α = 0.8
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Greater than 146 eV, But Less than 190 eV
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•RAGE calculations of hole area 
for 146 eV drive temperature 
predict a radiated power below 
the measured values.

•RAGE calculations at 190 eV 
over-predict radiated power, 
except late in time.

•Drive temperature must be 
somewhere in between 146 and 
190 eV.

•Need to try more drive histories.



11/9/00 24

Fusion Technology Institute University of Wisconsin - Madison

R.R. Peterson, D.C.. Kammer, G.L. Kulcinski rrpeter@engr.wisc.eduSNL Update

Additional Calculations are Needed and More Experiments 
Are Planned

•More RAGE calculations are needed:
—Calculations by Bowers predict a pre-pulse on the radiation 
pulse.
—Try more radiation histories between 148 and 190 eV.
—3-D simulations of hole closure.
—Other methods of measuring hole size.
—Study 7x6 hohlraums.
—Multi-group Radiation Transport will Soon be Working in 
RAGE

•Other Experiments:
—Spectrometer to measure temperature from spectrum.
—Rounded corners would reduce jetting and hole closure.
—Hohlraums driven by two zpinches.
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Computer Simulations of Debris Production From Current Computer Simulations of Debris Production From Current 
Return Cans in Wire Array ImplosionsReturn Cans in Wire Array Implosions**

R.R. Peterson, D. Williamson, and J.P. Blanchard
University of Wisconsin-Madison

Sandia Sandia National LaboratoriesNational Laboratories
November 6, 2000November 6, 2000

* Supported by SRI and DTRA
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BUCKY Calculation of Response of Current Return Can to 
Ti Wire Array Z-Pinch-Produced X-rays on Shot Z302
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Z-Pinch X-rays

0       2.5 cm

•Side Wall Calculations Shown Here; Top Cap Calculations 
have also been Performed.
•Steel in Can Compressed to 11g/cm3.
•Shock Moves 0.3 mm in 40 ns (average speed = 7.5 km/s)
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•Plasma Ion Temperatures in Can Are a Few eV on 
Surface and a Few Tenths of eV Behind Shock in Steel.
•Thermal Radiation from Steel is in Equilibrium with 
Plasma. 
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BUCKY Calculation of Response of Current Return Can to 
Ti Wire Array Z-Pinch-Produced X-rays on Shot Z302

Return Can Side Wall

Return Can Top Cap

Z-Pinch

Z-Pinch X-rays

•Pressures of 1-2 Mbar Generated in Side Wall by X-rays.
•Low Temperature Opacity Model Critical to 
Understanding Propagation of Re-radiated Photons into 
Material.

0       2.5 cm
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Current Density in 9 Slot Return Can
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Electro-Magnetic Modeling of Slotted Current Return Can 
Using ANSYS

Calculations Performed by 
Don Williamson
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Magnetic Force Per Element on a Rib As a Function 
of Position

FMAG Sum on the rib at max current (time = 80 ns)
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Computer Simulations of Aluminum Contained EOS Computer Simulations of Aluminum Contained EOS 
ExperimentsExperiments

R.R. Peterson and D.A. Haynes
University of Wisconsin-Madison

Sandia Sandia National LaboratoriesNational Laboratories
November 6, 2000November 6, 2000
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Calculation of Debris Plume in EOS Experiments Provides a 
Source Term for Debris Containment Analysis and Design

•1-D BUCKY Simulations to Get Velocities and Strain-Rates.

•Drugan Model Estimates of particle sizes.

•First Calculation: Z599 Experiment for Aluminum.

•Assessment of this Approach.

•What About ALEGRA and/or CTH?
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Time (s )
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BUCKY Simulation of Magnetically Driven Aluminum EOS 
Experiment on Z # 1; 0.1 g/cc CH and 4.0 g/cc Steel

CL

Magnetic Pressure

“Vac” Cu CH Al Steel

•1-D Cylindrical Geometry.

•Magnetic Pressure Applied Over 10 
zones of Cu Flyer Plate.  This Region 
is Initially 67 m Wide.

•Magnetic Field Diffusion Model in 
BUCKY NOT Used; BUCKY Was 
Designed for All Current Flowing in 
the Same Direction.

•SESAME EOS Used: Negative or 
Very Low Pressures May Lead to 
“Interesting” Results.

V~ 1 km/s
Compression of Sample
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BUCKY Simulation of Magnetically Driven Aluminum EOS 
experiment on Z #2; Solid Density CH and Steel

CL

Magnetic Pressure

“Vac” Cu CH Al Steel

•1-D Cylindrical Geometry.

•Magnetic Pressure Applied Over 10 
zones of Cu Flyer Plate.  This Region 
is Initially 67 m Wide.

•Magnetic Field Diffusion Model in 
BUCKY NOT Used; BUCKY Was 
Designed for All Current Flowing in 
the Same Direction.

•SESAME EOS Used: Negative or 
Very Low Pressures May Lead to 
“Interesting” Results. Time (s )
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•Current is from a SCREAMER Calculation of Shot Z599 Supplied 
by Chris Jeffs.
•Equal and Opposite Currents Flow in the Inner and Outer 
Conductors.  
•The Outer Conductor is the Cu Flyer Plate with an Inner Radius of 
1.3 cm; Current Flows Uniformly in 67 m thick layer.
•Magnetic Field is I/rc, where I is the enclosed net Current.
•Magnetic Pressure is B2/8 .

Magnetic Pressure Calculated from SCREAMER Current and 
Assumed Flow Geometry
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Pressure and Mass Density Profiles During Compression of 
Al Sample for Run #1

•Noise in Pressure and 
Density Profiles May be 
Due to Choice of 
SESAME EOS.

•Analytic EOS model is 
available for BUCKY; 
Should be investigated.

•The Behavior of the Al 
sample is a good way to 
Test the Validity of 
BUCKY and Give Some 
Credence to Debris 
Prediction.   
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Mass Density and Strain Rate Profiles at End of BUCKY 
Run #1 (50 s)
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Mass Density and Strain Rate Profiles at End of BUCKY 
Run #2 (35 s)
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Fracture of Experiment into Debris Fragments is 
Approximated with a Strain-Rate-Based Model
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•Strain-Rate is 106 1/s in Aluminum.

•Strain-Rate in Steel is 105 – 106 1/s at 
50 µs.

•From Drugan Model a range of 
Fragment Sizes can be Estimated.

•Aluminum size = 0.473 mm

•Steel size = 0.405 mm
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Experiments on Z to Simulate IFE Target Chamber Experiments on Z to Simulate IFE Target Chamber 
Phenomena*Phenomena*

R.R. Peterson 
University of Wisconsin-Madison

Sandia Sandia National LaboratoriesNational Laboratories
November 6, 2000November 6, 2000
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Energetic Ablator Ions Play a Dominant Role Direct-Drive 
Target Output : Z Experiments are Planned

Debris Ions
94 keV D - 5.81 MJ

141 keV T - 8.72 MJ
138 keV H - 9.24 MJ
188 keV He - 4.49 MJ 
1600 keV C - 55.24 MJ
Total - 83.24 MJ

X-Rays
22.41 MJ

Neutrons
317 MJ

Predicted Target Output 
(SOMBRERO) 

Total Yield
402 MJ

X-rays from 
Z-pinch on 

Z

Detector: 
Time-Resolved 
Mass 
Spectrometer

Ablator 
Material:
CH, CH + 
Au, CH 
foam
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Thermal X-rays Play a Dominant Role In-Direct-Drive 
Target Output : Z Experiments Could be Done

Debris Ions
94 keV D - 5.81 MJ

141 keV T - 8.72 MJ
138 keV H - 9.24 MJ
188 keV He - 4.49 MJ 
1600 keV C - 55.24 MJ
Total - 83.24 MJ

X-Rays
22.41 MJ

Neutrons
317 MJ

Predicted Target Output

Total Yield
402 MJ Streaked X-Ray Spectrograph

Ablator 
Material

Case
Material

Stagnant
plasma X-rays

X-rays from 
Z-pinch on 

Z
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Parameter HIBALL CASCADE HYLIFE-II LIBRA-SP OSIRIS 

X-ray Energy per shot 
(MJ) 

89.5 75 56 168.1 71.9 

Distance from X-ray 
Source (cm) 

500 400 50 400 350 

X-ray Fluence per shot 
(J/cm2) 

28.5 37.3 1800 83.6 46.7 

TBB (eV) 450 450 100-400 450 450 

Material Pb83Li17 Graphite Flibe Pb83Li17 Flibe 
 

 

X-ray Environment for Some IFE Target 
Chambers
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Both Z and NIF Can Produce X-ray Environment 
Relevant to IFE Target Chambers

 

X-ray Damage Parameters for Z 
Parameter Z (z-pinch only) 

X-ray Energy per shot (MJ) 2 

Distance from X-ray Source 
(cm) 

399 72.8 39.9 7.28 

X-ray Fluence per shot (J/cm2) 1.0 30 100 3000 

TBB (eV) 200 
 

 X-ray Damage Parameters for NIF 
Parameter NIF (20 MJ Target) NIF (1.4 MJ laser only) 

X-ray Energy per shot (MJ) 4 1 

Distance from X-ray Source 
(cm) 

564 103 56.4 10.3 282 51.5 28.2 5.15 

X-ray Fluence per shot (J/cm2) 1.0 30 100 3000 1.0 30 100 3000 

TBB (eV) 400 100-400 
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Progress in IFE Technology: December 1999-March 2000, (Cont’d.)

BUCKY code calculations for x-ray response experiments proposed for Z.  Results show (Figures 1 and 2) that Z x-rays can 
produce shock in steel similar to what the target x-rays would in a power plant (LIBRA-SP).

R. R. Peterson, C. L. Olson, T. J. Renk, G. E. Rochau, and M. A. Sweeney, “Chamber Dynamic Research with Pulsed Power,” presented at the 13th 
International Symposium on Heavy Ion Fusion, March 13-17, 2000, San Diego, California.
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Figure 1. Mass density profiles at various times calculated 
in stainless steel with BUCKY.  100 J/cm2 of x-rays with 
the spectrum and pulse width from Z shot 302.

Figure 2. Mass density profiles at various times calculated in 
stainless steel with BUCKY.  100 J/cm2 of x-rays with the 
spectrum and pulse width calculated for the LIBRA-SP target.

X-Ray Response Experiments are Possible on Z
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Experiments on Z to Study Radiation Transport Through Experiments on Z to Study Radiation Transport Through 
Plastic FoamsPlastic Foams

G.A. Rochau
University of Wisconsin-Madison

Sandia Sandia National LaboratoriesNational Laboratories
November 6, 2000November 6, 2000
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The propagation of radiation in porous foams is a crucial 
issue for many types of z-pinch experiments.

1-D BUCKY simulations may provide 
rough insight into the effect of 
porosity on radiation transport.
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.

9-slot Au current return can

Radiating z-pinch

Foam sample with 2 tracer layers

Beamlet backlighter

Backlighter target

EST Imaging system
(1-D “burn-through” imaging)

Streaked Spectrometer
(T,ρ at the tracer layer(s))

2-D framing camera 
(shock wave radiography)
(1-D spectral imaging)
or Streaked Spectrometer
(dopant spectroscopy of burn-wave)

The Z machine is a good test-bed for radiation propagation 
studies in foams and other materials of general interest

“Ride-Along” Experimental Arrangement
Attainable conditions in a CH2 foam

for “ride-along” type experiments
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Engineering and Intermediate Term ZEngineering and Intermediate Term Z--pinch Related pinch Related 
Research at The University of Wisconsin Research at The University of Wisconsin 

D.C. Kammer
University of Wisconsin-Madison

Sandia Sandia National LaboratoriesNational Laboratories
November 6, 2000November 6, 2000
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ICF Physics and Near Term Z-pinch Related Projects at The 
University of Wisconsin 

1.1. CAD Model for ZCAD Model for Z
2.2. Preliminary Finite Element Structural Modeling and Preliminary Finite Element Structural Modeling and 

Analysis of ZAnalysis of Z
3.3. Design of a System to Catch and Contain Debris from EOS Design of a System to Catch and Contain Debris from EOS 

ExperimentsExperiments
4.4. Shielding Analysis for the XShielding Analysis for the X--1 Target Chamber1 Target Chamber
5.5. Activation of XActivation of X--1 Target Chamber1 Target Chamber
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Model of Z Model of Z 

G.A. Rochau, M. Redmond 
University of Wisconsin-Madison

Sandia Sandia National LaboratoriesNational Laboratories
November 6, 2000November 6, 2000



11/9/00 53

Fusion Technology Institute University of Wisconsin - Madison

R.R. Peterson, D.C.. Kammer, G.L. Kulcinski rrpeter@engr.wisc.eduSNL Update

Preliminary Finite Element Structural Modeling and Preliminary Finite Element Structural Modeling and 
Analysis of Z Analysis of Z 

Dan Kammer and Andrew Kostuch
University of Wisconsin-Madison

Sandia Sandia National LaboratoriesNational Laboratories
November 6, 2000November 6, 2000
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Z Finite Element Model

• ProENGINEER

• Cubit

• ANSYS 5.5
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Model Statistics

• 21329 Elements

• 25960 Nodes

• 152160 Degrees of 
Freedom

• Separated into 28 
Components
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Shells

• 12 Components 
Modeled with Shells

• All Shells Shown 
Here
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Solids

• 16 Components 
Modeled with Solids

• All Solids Shown 
Here
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MITLS

• Mitls Modeled with 
Shells

• Attached to Idealized 
Center Can
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Loads and Constraints

• Fully Constrained at 
the Base (shown in 
yellow)

• Applied Compressive 
Load for Pre-stress 
Effects (shown in red)

• Vacuum and Water 
Pressure Forces yet to 
be Applied
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Selected Component Sets
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Mode 5  (26.9 Hz)
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Mode 8 (62.9 Hz)
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Mode 13 (80.8 Hz)
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Near Term Work

• Generate Hydrostatic Loads
• Generate Vacuum Loads
• Compute Prestressed Mode Shapes and 

Frequencies
• Perform Trade Studies to Determine Number of 

Modes to be Retained for Transient Analysis
• Perform Structural Loads Analysis
• Apply Mode Acceleration Technique to Predicted 

Results
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Proposed Accelerometer Placement for Z Shock Vibration 
Experiments

Location 
Number Directions Description

1 z Top MITL

2 z Bottom MITL.

3 xyz Bottom of circular beam.

4 xyz Inside wall of vacuum chamber.

5 xyz Bottom of water tank.

6 xyz Housing surrounding water switch.

7 xyz Outer wall of water tank.

8 xyz Bottom of water tank.

9 xyz Housing surrounding water switch.

10 y North wall by crane track.

11 xz Face of crane.

X

Y

North Wall

1z,2z

3xyz
4xyz

5xyz

6xyz
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11xz

Crane

Water Tank

7xyz



11/9/00 66

Fusion Technology Institute University of Wisconsin - Madison

R.R. Peterson, D.C.. Kammer, G.L. Kulcinski rrpeter@engr.wisc.eduSNL Update

Design of a System to Catch and Contain Debris from EOS Design of a System to Catch and Contain Debris from EOS 
ExperimentsExperiments

I.N. Sviatoslavsky and G. Shanmugasundar 
University of Wisconsin-Madison

Sandia Sandia National LaboratoriesNational Laboratories
November 6, 2000November 6, 2000
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ProE Model of Debris Catcher Can be Processed with 
CUBIT to Make a Mesh for ANSYS

•ProEngineer Model Developed
�Modification of SNL Catcher
�Additional Cylindrical 
Absorbers in Back of Samples

•Mesh will be Created with CUBIT
•Mechanical Load from BUCKY 
Simulations
•ANSYS model of Structural 
Response
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Neutron and Gamma Shielding Analysis and Design for the Neutron and Gamma Shielding Analysis and Design for the 
XX--1 Target Chamber1 Target Chamber

M.E. Sawan 
University of Wisconsin-Madison

Sandia Sandia National LaboratoriesNational Laboratories
November 6, 2000November 6, 2000
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Neutronics Analysis for X-1: Overall Damage is Low 
But Damage to Insulators Needs Consideration

•Several 1-D calculations performed to determine neutron and gamma flux distribution 
and nuclear parameters for the chamber components.

•Cumulative fluence and damage in chamber components are very low allowing for re-
welding.  For 500 shots, the peak damage in chamber wall will be 2x10-4 dpa and 5x10-3

He appm

•Nuclear heating is very small and no additional cooling is needed

•Peak leakage fluence from shield tank is very small (1.6x104 n/cm2 and 4.9x109 γ/cm2 )

•Cumulative insulator fluence and dose are very small but high insulator dose rates result 
in significant degradation in resistivity @ 40 ns after shot. Based on data for ceramic 
insulators irradiated in HFIR, resistivity is expected to get back to unirradiated value 
before next shot.
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Neutronics and Shielding Analysis for the X-1 
Chamber
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Neutron Damage to Insulator Stack in X-1 Target 
Chamber 

Ceramic Insulator:
Peak fast n fluence 3.9e14 n/cm2/ shot

2e17 n/cm2/500 shots
Peak heating 13.6 J/cm3 per shot

4e5 Rads/shot
2e8 Rads/500 shots

Peak dose rate 1.9e13 Rads/s 
@40 ns following shot

Organic Insulator:
Peak fast n fluence 2e14 n/cm2/shot

1e17 n/cm2/500 shots
Peak heating 9.2 J/cm3 per shot

4.9e5 Rads/shot
2.4e8 Rads/500 shots

Peak dose rate 2.3e13 Rads/s 
@40 ns following shot

Assumptions:
• 200 MJ yield. 500 shots
• No material between target and insulator
• Insulator at 2.5 m from target
• Spinel representing ceramic insulator. Epoxy representing organic insulator

•Significant instantaneous degradation in resistivity between shots. Is this a concern?
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Activation of XActivation of X--1 Target Chamber1 Target Chamber

H.Y. Khater 
University of Wisconsin-Madison

Sandia Sandia National LaboratoriesNational Laboratories
November 6, 2000November 6, 2000
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♦  Different types of yield as well as non-yield shots are proposed for X
 

♦ Ignition of ICF capsules may produce fusion yield of up to a 1000 MJ
 

♦  The blast resulting from the explosion of the capsule is confined insid
an aluminum target chamber, submerged in a shielding water tank  

 

♦ Fusion neutrons from yield shots and, to a lesser degree, photoneutron
and ions will activate the experimental chamber  

 

♦ Large pieces of magnetic debris, and most of the X-rays and debris ion
emitted from the target are stopped by a hemispherical mini-chambe
made of Kevlar with a graphite inner coating 

 

♦ The X-rays and debris ions that pass through the holes in the mini-
chamber will be absorbed by an aluminum liner attached to the inne
surface of the target chamber 

Assessment of Personnel Accessibility in the X-1 Pulsed 
Power Facility
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♦ Radiation shots:  

- Only photoneutrons are produced during these shots  
- The photoneutrons are produced as a result of interaction  
 between the Bremsstrahlung radiation and the MITLs 

 

♦ Moderate yield shots:  
- These shots produce a fusion yield of 200 MJ 

 

♦ High yield shots:  
- These shots produce a fusion yield of 1000 MJ 

 
Shots schedule 
 
♦ Radiation shots have a pulsing schedule of 1 shot per day for  

a total of 240 shots per year  
 

♦ Moderate and high yield shots assume a pulsing schedule of  
2 shots per month for a total of 24 shots per year  

 

Three Different Types of Shots are Assumed in This 
Analysis
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♦  
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♦The two alloys Al-5083 and 2 1/4 Cr-1 Mo steel are considered as chamber material candidates
♦Using the aluminum chamber allows for hands-on maintenance,  10 days following moderate yield shots
♦Using the steel chamber would not allow for hands-on maintenance at all times following shots.
♦Based on these results, the Al-5083 alloy is selected as the preferred chamber material

Aluminum 5083 is found to be an Acceptable Material for 
the X-1 Target Chamber from an Activation Point of View
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Biological Dose Rates Following Radiation Shots (No Fusion 
Neutrons) are Lower, But Still Significant

♦Dose rates behind the chamber following radiation shots are 4 orders of magnitude 
lower than dose rates following moderate yield shots
♦Hands-on maintenance activities outside the chamber may be allowed within a few 
hours following radiation shots
♦A waiting period of about a day is needed before accessing the inside of the 
chamber following radiation shots



11/9/00 78

Fusion Technology Institute University of Wisconsin - Madison

R.R. Peterson, D.C.. Kammer, G.L. Kulcinski rrpeter@engr.wisc.eduSNL Update

Neutronics and Activation Analysis of the Laser 
Backlighter on Z
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Moderate Yield Shots
200 MJ

2 shots/month
1 year of operation

Radiation Shots
1 shot/day

1 year of operation

10-8

10-6

10-4

10-2

100

102

104

106

108

1010

1012

100 101 102 103 104 105 106 107

Top Side

D
os

e 
R

at
e 

(m
re

m
/h

r)

Time Following Shutdown (s)

1 min 1 hr 6 hr 1 d

limits for 2.5 mrem/hr

1 wk1 mo10 min

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

100 101 102 103 104 105 106 107

Top Side

D
os

e 
R

at
e 

(m
re

m
/h

r)

Time Following Shutdown (s)

1 min 1 hr 6 hr 1 d

limits for 2.5 mrem/hr

1 wk
1 mo10 min

Biological Dose Rates Around the Final Focus Mirror 
Assembly on X-1 
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The off-site dose calculations are performed using the following (worst 
release) conditions: ground release, atmospheric stability Class F, and  
1 m/s wind speed 
 

Isotope Early Dose Latent Dose 
 
Pu-236 (T1/2 = 2.87 y) 0.35 0.25 
Pu-237 (T1/2 = 45.2 d) 389 180 
Pu-238 (T1/2 = 87.7 y) 4.78 3.27 
Pu-239 (T1/2 = 2.41e4 y) 1224 821 
Pu-240 (T1/2 = 6.56e3 y) 334 224 
Pu-241 (T1/2 = 14.4 y) 43.9 28.2 
Pu-242 (T1/2 = 3.75e5 y) 20547 13698 
Pu-243 (T1/2 = 4.956 h) 79.1 67.7 
Pu-244 (T1/2 = 8e7 y) 4.64e6 3.06e6 
Pu-245 (T1/2 = 10.5 h) 5.3 5.26 
Pu-246 (T1/2 = 10.85 d) 6.37 5.02 

Number of mg of Pu Producing 1 rem off-site dose at the 1 
km Site Boundary
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M.S. Derzon, C. Olson, G.E. Rochau, S. Slutz, A. Zamora,

Sandia National Laboratories

G.A. Rochau, R.R. Peterson, Fusion Technology Institute, 

University of Wisconsin

J.  DeGroot, University of California, Davis, CA

P.  Peterson, University of California, Berkeley, CA

Inertial Fusion Chamber Design Using an Electrically-
Coupled (Z-pinch) Driver Concept
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Fig. 3: Shot rate and target cost for a 1 GWe pulsed fusion reactor.  The shot rate is based on a 
33% thermal to electrical energy conversion.  The target cost is based on a $0.05/kWh energy 
cost and the assumption that target expenditures make up 10% of the overall cost of electricity.
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Fig. 4: Schematic of a single ZP-3 module.  The pre-pumped, pre-aligned RTL and integrated target 
hardware is lowered into the chamber before each shot along with the blanket structure.  The target 
energy yield vaporizes or liquefies part of the RTL and blanket which is pumped out of the chamber 
and circulated through a water or gas heat exchanger.  After heat exchange, the material is sent through 
a tritium extractor and material separator and then recast into a blanket or RTL for a future shot.
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Schematic of a X-Pinch IFE Power Plant
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Fig. 5: An artist’s rendition of the Z-Pinch Power Plant (ZP-3).  In this version, the complex contains 12 
modules which all share a single material collection and re-manufacturing center.  Cartridges (blanket, 
RTL, and target assemblies) are cast from recycled material and distributed to each module while the post-
shot material is pumped back to the manufacturing center for recycling.

Schematic of a X-Pinch IFE Power Plant
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Blanket

R0 DR

Fig. 7:  Cross-sectional view of the spherical blanket models 
used in COG.  Blanket materials which were modeled include 
natural Li, Pb-17Li, and FliBe.

Cross-sectional view of the spherical blanket models 
used in COG.
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Fig. 8: COG calculations of the (a) tritium breeding ratio, (b) energy conversion ratio, and (c) neutron 
shielding effectiveness for natural lithium (solid), FliBe (dashed), and Pb-17Li (dotted).  The energy 
conversion ratio is calculated by taking the ratio of the energy deposited in the blanket to the total 
released fusion energy while the shielding effectiveness is determined by taking the ratio of the COG 
calculated fluence at the blanket edge to the fluence assuming no blanket structure
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Fig. 10: Chamber geometry in COG and ALARA models for determining the chamber wall activation.  SS316, 
6061-T6 Al, and 2.25Cr-1Mo steel were considered as wall materials.
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Fig. 11: ALARA calculated chamber wall activation as a function of blanket 
thickness assuming a cylindrical 6061-T6 Al chamber with a 20 cm wall thickness, 
a radius of 400 cm, a total height of 800 cm, and 20 cm thick Al end caps.  The 
chamber activity is shown for cool-down periods of 1 year (solid), 10 years (large 
dashed), 100 years (small dashed), 1000 years (dot dashed), and 10000 years 
(dotted).  These calculations do not include the shielding effect of the RTL 
structure.
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Fig. 12: Chamber wall activation as function of time after shutdown following a 30 year ZP-3 lifetime assuming a 
30 GJ target yield and a 0.1 Hz shot rate for an (a) 95 cm thick Li blanket and a (b) 80 cm thick FliBe blanket.  
Chamber wall materials which were studied include SS316 (solid), 2.25 Cr -1 Mo Steel (dashed), and 6061 - T6 Al 
(small dotted).  Also plotted are the activity of an SS316 chamber with no blanket (dot-dashed), and a once-through 
LWR (large dotted).  These calculations were conducted with the ALARA activation code assuming continuous 
operation with no downtime for maintenance.
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Fig. 13: Temperature as a function of radius from machine center for both natural lithium and FliBe breeder 
blankets for a 30 GJ target yield (solid) and a 1 GJ target yield (dotted).  Both blankets were assumed to have an 
initial temperature 50 K below their respective melting points (350 K for Li and 742 K for FliBe).  The tritium 
breeding ratios are also plotted as a function of radius (dashed) for reference.
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University of Wisconsin Capabilities Related to ICF, IFE, 
and Pulsed Power

•Chamber and Power Plant Design
•Atomic Physics and Opacity Modeling (EOSOPA)
•Radiation-Hydrodynamics (BUCKY, DRACO, RAGE)
•Structural Mechanics (ANSYS)
•Fragmentation
•Mesh Generation (CUBIT)
•CAD
•Visualization
•Neutronics and Photonics (DANTSYS, MCNP)
•Radiation Effects to Solids
•Activation (DKR-ICF, ALERA)
•Shock Tube Experiments
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University of Wisconsin Suggestions for Areas of Work with 
Sandia National Laboratories

•RAGE support for Hohlraum Experiments
•ALEGRA: debris generation, code validation
•CUBIT grid generation for ALEGRA
•BUCKY target calculations: capsules for z-pinch hohlraums
•Neutronics and Photonics:
•Radiation Effects:
•Safety:
•Z-pinch IFE Power plant design and analysis 
•IFE relevant chamber experiments on Z 
•Foam Radiation transport experiments and Z
•Structural analysis for Z and Z-upgrade
•BUCKY, ALEGRA and/or RAGE analysis of EOS experimental debris. 




