
Sealing Faceted Surfaces to Achieve
Watertight CAD Models

Brandon M. Smith1, Timothy J. Tautges2, Paul P.H. Wilson1

1University of Wisconsin-Madison
2Argonne National Laboratory

October 4, 2010

19th International Meshing Roundtable



Introduction Previous Work Project Goals Assumptions Algorithm Results

Facet Based Models (FBMs)

I Geometric Vertices, Edges, and Faces represented by points, edges, and triangles
I Used for file transfer, mesh generation, and efficient geometric computation
I Solid modeling engines typically facet each Face independently
I Faceted boundaries of neighboring Faces are not the same
I Geometric gaps and discontinuous topology occur between Faces
I Problematic for meshing, ray tracing, etc...

Problem Statement: Create algorithm to fix faceting flaws between Faces.
2 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Two Approaches to Fix Faceting Flaws

Attempt to restore missing or discarded information.

Region-Based I Reconstruct entire boundary using intermediate representation
I Often theoretical guarantee
I α-Shapes [Edelsbrunner and Mücke, 1994],

Crust [Amenta et al., 1998],
Binary Space Partition [Murali and Funkhouser, 1997],
Marching Cubes [Ju, 2004]

Mesh-Based I Quickly locate defects using free edges
I Repair flaws with small perturbations to boundary in vicinity of

defects
I Preserve Face features away from local defects
I Rely on proximity

Mesh-Based Approach Chosen

3 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Mesh-Based Approaches

Assemble Free Edges [Barequet and Kumar, 1997]

1. Free edges adjacent to a single facet

2. Connect to form arcs using topology

3. Associate arcs by proximity or topology

4. Possible ambiguity due to pinch points

Triangulate [Barequet and Sharir, 1995]

1. Create new triangles between assembled free
edges

2. Use Ear clipping or stitching

3. Locally optimize patch by angle or heuristic

Vertex-Vertex Contraction

I Tolerance vs. feature size

I Location (one,average,bucket)

I Avoids new triangles

I Edge proximity 6= vertex proximity

Vertex-Edge Contraction [Borodin et al., 2002]

1. Project vertex onto edge

2. Insert vertex into the edge at projection

3. Split triangle into two triangles

4. Perform vertex-vertex contraction

4 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Algorithm Requirements

1. Seal faceted Faces along Edges to create a watertight model.

2. To preserve human efficiency, the algorithm must be automatic.

3. New facets must be owned by exactly one Face.

4. Support non-manifold Faces.

5. Fast enough to use as a preprocessing module.

6. Deformation of input model should be minimized.

7. Creation of new triangles should be minimized.

Contribution: Increase robustness by using topology of Edges to
develop a provably reliable algorithm implemented as open-source
software.

5 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Assumptions I

Notation

I Geometric Entities: vertices V, edges E, faces F , regions R, loops L
I Faceted Entities: vertices V , edges E , faces F , regions R, loops L

I Faceted Elements: facet edges e, facet faces f , facet points p

I Distance d(), boundary Ω(), facet tolerance εf , merge tolerance εm

E E e

Geometry Assumptions

1. The geometry is a cell complex: {V i , E i ,F i ,Ri} ∈ C

Faceting Assumptions

2. Each geometric Edge and Face has a corresponding faceted entity:
E i ←→ E i , F i ←→ F i , ∀i .

3. Individual faceted Edges and Faces are a cell complex: E i ∈ C ,F i ∈ C , ∀i .
4. Feature size is much larger than facet tolerance: LFS � εm.

5. Each faceting is non-degenerate, oriented, and non-inverted.

6. Faceting for each Edge with a single Vertex will have at least 3 facet edges.

6 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Assumptions II

Notation

I Geometric Entities: vertices V, edges E, faces F , regions R, loops L
I Faceted Entities: vertices V , edges E , faces F , regions R, loops L

I Faceted Elements: facet edges e, facet faces f , facet points p

I Distance d(), boundary Ω(), facet tolerance εf , merge tolerance εm

E E e

Connecting Assumptions

7. Each faceted Face boundary corresponds to a set of faceted Edges:
Ω({fj})i → {E k} ∀i , j , k.

8. Facet points are within merge tolerance of corresponding geometric entities:
d(pi , E j ) ≤ εf , d(pk ,F l ) ≤ εf ∀i , j , k, l .

9. Facet edges and triangles are within facet tolerance of corresponding geometric
entities: d(E i , E i ) ≤ εf , d(F j ,F j ) ≤ εf ∀i , j .

10. The facet tolerance is much greater than the merge tolerance: εf � εm.

11. Points on faceted face boundaries are within merge tolerance of some model
entity that bounds the corresponding model entity, though which bounding
model entity is not known: d(Ω({fj})i , Ek ) ≤ εf ∀i , j , k.

12. The elements of the faceted edges are not the same as the boundary of the
elements of the faceted faces: {ej}i /∈ Ω({fl}k ) ∀i , j , k, l .

7 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Algorithm Overview

Import FBM from solid modeling engine

1. Preprocess small entities

2. Seal Faces
I Seal arcs to corresponding Edges

3. Postprocess inverted triangles

Export watertight FBM to application/library

I Algorithm operates only on FBM, not solid model.

I Outline of proof appears in paper.

8 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Preprocess Small Entities

1. Remove Edges shorter than facet tolerance

2. Merge Edges that average less than facet tolerance apart from
each other

3. Remove Faces if all bounding Edges occur in merged pairs

4. Remove Regions if all Faces have been removed

Small entities often created during imprinting.

Remove Small Edges Merge Edges Remove Faces

→ → →

9 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Seal Faces

1. Skin Face to recover bounding edges

2. Orient bounding edges

3. Assembled bounding edges into loops

4. Match Vertex points to points on loops, using proximity

5. Separate bounding loops into arcs, using Vertex points as separators

6. Associate arcs with corresponding Edges that bound the Face

7. If Edge has not yet been sealed, replace Edge with arc

8. Otherwise seal arcs to corresponding Edges that bound the Face

See paper for algorithm.

Skin Face Match Vertices Separate Arcs Associate Edges

→ → → →

10 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Seal Arcs

Initialize pcurrent , pEdge , and parc

Until arc is sealed:
pnext = pEdge or parc s.t. d(pcurrent ,pnext)=min
If d(pcurrent ,pnext) ≤ εf Vertex-Vertex Contraction

contract pnext to pcurrent

Else if d(pEdge , parc ) ≤ εf Vertex-Vertex Contraction
contract parc to pEdge

Else Vertex-Edge Contraction
insert pnext into opposite edge

Update adjacencies, remove degeneracies
Update pcurrent , pEdge , and parc as needed See paper for algorithm.

Vertex-Vertex Contraction
(to pcurrent )

Vertex-Edge Contraction Vertex-Vertex Contraction
(to pEdge )

parc

pcurrent
pEdge

→ parc

pcurrent
pEdge

→ parc

pcurrent pEdge

→
pcurrent

11 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Post Process Inverted Triangles

1. Remove inverted triangles

2. Refacet loops

3. Expand patches as necessary

4. Constrain to bounding Edges

Inverted facets occur when assumptions are not true:
εf > LFS or εf < εm.

12 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Test Models

ITER FWS Module 13 40◦ ITER Benchmark ITER Test Blanket Module

FNG Benchmark UW Nuclear Reactor Advanced Test Reactor

13 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Entity Count

Table: Geometric entity count and number of triangular facets [millions]
as a function of facet tolerance [cm].

Model Geometric Entity Facet Tolerance [cm]

Regions Faces Edges 10−1 10−2 10−3 10−4 10−5

UW Nuclear Reactor 2820 30237 65078 2.62 2.62 2.98 8.56 29.1
Advanced Test Reactor 2132 11827 22402 0.44 0.45 0.84 2.44 7.65
40◦ ITER Benchmark 902 9834 20485 0.32 0.78 2.07 8.76 16.3
ITER Test Blanket Module 71 4870 13625 0.07 0.08 0.12 0.38 1.57
ITER Module 4 155 4155 10255 0.29 0.29 0.34 1.07 2.89
ITER Module 13 146 2407 5553 0.28 0.29 0.50 2.54 8.65
FNG Fusion Benchmark 1162 4291 5134 0.11 0.11 0.14 0.46 1.14
ARIES First Wall 3 358 743 0.17 0.87 1.21 1.55 2.45
High Average Power Laser 15 139 272 0.15 0.47 0.53 0.61 0.88
Z-Pinch Fusion Reactor 24 95 143 0.05 0.29 0.99 1.17 1.53

Defaults: εf = 10−3 cm, εm = 5x10−4 cm

14 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Example: ITER Test Blanket Module

Unsealed Sealed
15 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Face Sealing Failures

Table: Number of face sealing failures as a function of facet tolerance
[cm].

Model Facet Tolerance [cm]
10−1 10−2 10−3 10−4 10−5

UW Nuclear Reactor 1019 0 0 0 0
Advanced Test Reactor 88 0 0 0 0
40◦ ITER Benchmark 18 9 0 18 191
ITER Test Blanket Module 0 0 0 0 0
ITER Module 4 0 0 0 0 0
ITER Module 13 2 0 0 0 0
FNG Fusion Benchmark 63 0 0 0 0
ARIES First Wall 1 0 0 0 0
High Average Power Laser 0 0 0 0 0
Z-Pinch Fusion Reactor 3 0 0 0 0

16 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Change in Number of Triangles

Table: The change ratio [sealed/unsealed ] in the number of facets due to
sealing is displayed as a function of facet tolerance [cm].

Model Facet Tolerance [cm]
10−1 10−2 10−3 10−4 10−5

UW Nuclear Reactor 0.71 0.99 1.00 1.00 1.01
Advanced Test Reactor 0.64 1.00 1.00 1.00 1.00
40◦ ITER Benchmark 1.00 1.01 1.02 1.02 1.03
ITER Test Blanket Module 0.90 1.00 1.01 1.01 1.01
ITER Module 4 0.65 0.98 1.00 1.01 1.01
ITER Module 13 0.78 1.00 1.00 1.00 1.00
FNG Fusion Benchmark 0.60 1.00 1.00 1.00 1.00
ARIES First Wall 1.00 1.00 1.00 1.00 1.00
High Average Power Laser 1.00 1.00 1.00 1.00 1.00
Z-Pinch Fusion Reactor 0.87 1.00 1.00 1.00 1.00

17 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Inverted Facets

Table: The number of Faces containing inverted facets after sealing as a
function of facet tolerance [cm].

Model Facet Tolerance [cm]
10−1 10−2 10−3 10−4 10−5

UW Nuclear Reactor 272 0 1 0 13
Advanced Test Reactor 30 0 0 0 0
40◦ ITER Benchmark 7 7 4 0 10
ITER Test Blanket Module 0 0 0 0 0
ITER Module 4 0 0 0 0 0
ITER Module 13 2 0 0 0 0
FNG Fusion Benchmark 16 0 0 0 0
ARIES First Wall 0 0 0 0 0
High Average Power Laser 0 0 0 0 0
Z-Pinch Fusion Reactor 2 1 0 0 0

Inverted facets occur when assumptions are not true:
εf > LFS or εf < εm.

18 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Timing

Table: The time [seconds] to seal each model as a function of facet
tolerance [cm], on one core of an Intel Xeon X5365 3.00 GHz CPU.

Model Facet Tolerance [cm]
10−1 10−2 10−3 10−4 10−5

UW Nuclear Reactor 136 65 64 156 587
Advanced Test Reactor 93 16 27 76 235
40◦ ITER Benchmark 6 12 38 71 236
ITER Test Blanket Module 15 9 9 14 30
ITER Module 4 10 8 8 23 67
ITER Module 13 6 5 6 19 67
FNG Fusion Benchmark 7 4 4 9 29
ARIES First Wall 1 3 5 13 36
High Average Power Laser 1 1 2 5 25
Z-Pinch Fusion Reactor 1 1 2 4 12

19 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Application Example: Monte Carlo Radiation Transport

Leakage through unsealed surfaces is one cause of lost particles.

20 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Conclusion

I Goals have been met: fast, automatic algorithm, supports
non-manifold Faces, preserves input detail, minimizes new
triangle creation

I Edges used to guide sealing, increasing robustness

I Successfully sealed 10 test models

I Implemented as open-source algorithm in MeshKit
http://trac.mcs.anl.gov/projects/fathom/wiki/MeshKit

21 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Acknowledgement

I Jason Kraftcheck, for advice and assistance using MOAB

I Sandia National Laboratories and the US ITER Project
through Sandia Contracts 579323 and 866756

I US Department of Energy Scientific Discovery through
Advanced Computing program under Contract
DE-AC02-06CH11357

22 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Questions?

bmsmith6@wisc.edu

23 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

References I

Amenta, N., Bern, M., and Kamvysselis, M. (1998).

A New Voronoi-Based Surface Reconstruction Algorithm.
In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pages
415–421, New York, NY, USA. ACM.

Barequet, G. and Kumar, S. (1997).

Repairing CAD Models.
In VIS ’97: Proceedings of the 8th Conference on Visualization ’97, Los Alamitos, CA, USA. IEEE
Computer Society Press.

Barequet, G. and Sharir, M. (1995).

Filling Gaps in the Boundary of a Polyhedron.
Computer Aided Geometric Design, 12:207–229.

Borodin, P., Novotni, M., and Klein, R. (2002).

Progressive Gap Closing for Mesh Repairing.
Advances in Modelling, Animation and Rendering, pages 201–21.

Edelsbrunner, H. and Mücke, E. (1994).

Three-Dimensional Alpha Shapes.
ACM Transactions on Graphics, 13(1):43–72.

Ju, T. (2004).

Robust Repair of Polygonal Models.
In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 888–895, New York, NY, USA. ACM.

24 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

References II

Murali, T. M. and Funkhouser, T. A. (1997).

Consistent Solid and Boundary Representations from Arbitrary Polygonal Data.
In I3D ’97: Proceedings of the 1997 symposium on Interactive 3D graphics, pages 155–ff., New York, NY,
USA. ACM.

Newman, T. S. and Yi, H. (2006).

A Survey of the Marching Cubes Algorithm.
Computer and Graphics, 30:854–879.

25 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Face Sealing Algorithm

I. ∀F i

a. ∀V i ∈a F i

1. find e ∈ ΩF i s.t. d(e,V i ) min
2. if d(p ∈adj e,V i ) min, choose p
3. p → V i

b. group ΩF i → ΩjF i using p ∈ Vk ∈adj F i

c. ∀ΩjF i = e
1. find E k s.t. doriented(Ωj , E k) min
2. if E k not sealed yet, E k → ΩjF i

3. else seal(ΩjF i , E k)

26 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Arc Sealing Algorithm

Edge/arc sealing algorithm. otherpoint(e, p) is the point adjacent to e not equal to p;
for en, pn = next({e}, e, p), en is the next edge along the ordered sequence of edges
{e} that shares p; pn = otherpoint(en, p).

Begin: seal arc Ωj = {p}, {e}, Ek = {p}, {e}
I. Initialize:

a. pc = Ωstart (Ωj )

b. es , ps = next(Ωj ,−, pc )

c. ee , pe = next(Ek ,−, pc )

II. while Ωj not sealed
a. if pe = ps

1. ee ← es
2. Ωj sealed.

b. else if d(ps , pe ) ≤ εf
1. pe ← ps
2. ee ← es
3. pc = pe

4. es , ps = next(Ωj , ee , pc )

5. ee , pe = next(Ek , ee , pc )

c. else if d(pe , es ) ≤ εf
1. split es with pe , es → e1(pc , pe ), e2(pe , ps )
2. pc = pe

3. ee , pe = next(Ek , ee , pc )
4. es = e2
(ps unchanged)

d. else if d(ps , ee ) ≤ εf
1. split ee with ps , ee → e1(pc , ps ), e2(ps , pe )
2. pc = ps

3. es , ps = next(Ωj , es , pc )
4. ee = e2
(pe unchanged)

27 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Two Approaches to Produce Watertight Faceting

Create new watertight faceting

I Discretize Edges

I Facet Faces constrained to
Edges

I Pros: High success
probability, access to solid
model

I Cons: Complex
implementation

Fix existing faceting flaws

I Seal Faces to close gaps

I Pros: Fits with existing
software chain, works for
legacy models

I Cons: Must overcome loss of
information from solid model

Problem Statement: Create algorithm to fix faceting flaws between
Faces.

28 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Algorithm Input Formats

Point Data Unorganized points on the Face of a solid

Polygon Data Lists of polygons with (optional) normal
vectors

Faceted CAD Data Geometric topology with faceted Edges and
Faces

29 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Region-Based Approaches I

α-Shapes [Edelsbrunner and Mücke, 1994]

1. Input point data S

2. Compute Delaunay Triangularization (DT) of S

3. Compute circumradius r of each triangle

4. Compare with specified α

5. Triangles with r < α define boundary

Crust [Amenta et al., 1998]

1. Input point data S

2. Compute DT of S

3. Compute Voronoi Diagram (VD) of DT

4. Let V be vertices of VD

5. Compute another DT of S ∪ V

6. Edges with both points in S define boundary

7. VD medial axis filters unwanted edges of original
DT

30 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Region-Based Approaches II

Binary Space Partition [Murali and Funkhouser, 1997]

1. Input polygon data

2. Create BSP using polygon planes

3. Flag portion of plane coincident with input
polygon as opaque

4. Calculate solidity of each cell in BSP

5. Boundary is defined by cells of positive solidity

Marching Cubes [Ju, 2004]

1. Input polygon data

2. Create regular lattice of edges e, points p, and
cubes c

3. Find edges e that intersect input polygons

4. Mark intersection edge endpoints p as in or out

5. Infer signs on unmarked points p

6. Each cube is defined by sign of its points p

7. Determine boundary of union of cubes

31 / 22



Introduction Previous Work Project Goals Assumptions Algorithm Results

Goal: Recreate Missing Information

Table: Overview of defect healing methods for various algorithms.

Algorithm Heals defects by...
α-Shapes

I Select proper α to resolve features without penetrating Delaunay triangulation of surface

Crust

I Use heuristic to label poles inside/outside based on local inside/outside characteristics

BSP

I Extends input 2D polygonal boundary to planar boundary of convex 3D cells. Matrix equation
used to label cells as inside/outside based on shared cell boundaries

Marching Cubes

I Select single isosurface at a distance far enough to bridge defects.
I Select range of isosurfaces to identify entire cubes as inside/outside [Newman and Yi, 2006]
I Triangulate patch across gaps to minimizes area or other heuristic

All Mesh-Based

I Triangulate patch across gaps to minimizes area or other heuristic
I Vertex-vertex contraction by proximity
I Vertex-edge contraction by proximity

32 / 22


	Introduction
	Previous Work
	Project Goals
	Assumptions
	Algorithm
	Results

