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Motivation
• Cancer can be treated with external gamma beams 

which generate the electrons that cause the dose to 
the patient. 

• As treatment methods become more precise it is 
essential to quickly model electron transport.
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Motivation(2)

• Monte Carlo methods can model electrons 
accurately, but often require long run times to obtain 
the required statistics.

• Discrete Ordinates methods run quickly but have not 
been developed for electron transport*.

• Speed and accuracy are important for treatment 
optimization. 

• Research: Can TORT handle charged particle 
transport without modification if cross sections are 
defined in a manner that accounts for the electrons? 

*ATILLA has been successfully applied to 3D radiotherapy problems.
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Boltzmann-Fokker-Planck
• The BFP equation is a Boltzmann equation that 

has been modified to treat charged particles.
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• The first two terms are the Fokker-Planck operators: 
− The first term accounts for CSD. 
− The second term accounts for CS.
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Boltzmann-Fokker-Planck(2)

• Details of these two terms:
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• The remaining terms make up the Boltzmann 
equation, including an inhomogeneous source.
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Codes Used
• CEPXS-BFP: generated cross sections
• ARVES: processed cross sections
• GIP: formatted cross sections
• GRTUNCL3D: generated uncollided plus a first-

collided source for TORT calculations
• ANISN, DORT, TORT: transport with discrete 

ordinates
• EGSnrc: transport with Monte Carlo, used for 

reference case
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Code Use of BFP
• CEPXS-BFP chosen because it creates electron 

cross sections that account for CSD and CS.
− CSD operator treated directly
− CS operator treated indirectly

• ARVES processes cross sections – uses a step 
method to convert direct treatment of CSD term 
to indirect. 

• Total and scattering cross sections are modified 
in the indirect treatments. 

• DOORS designed to solve standard multi-group 
neutral-particle transport equation.



9

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Problems Solved
• Sources

− Photons: first 40 energy groups from Vitamin B6
− Electrons: 40 group linear structure
− Photons generate electrons

• Homogeneous water cube 
− Solved with TORT only.
− Solved with photons only, photons generating 

electrons, and with electrons only.
• Lung Phantom

− Solved with ANISN, DORT, and TORT.
− Solved with photons generating electrons.
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Water Box
• Water in a 2.5 cm x 2.5 cm x 2.5 cm cube with a 

0.25 cm mesh.
• Density of water = 1 g/cm3.
• Scattering order of P9 and quadrature order of 

S16 were used.
• An isotropic point source was located at 1.25 

cm, 1.25 cm, -0.625 cm. 
• The point source was chosen for ease of use 

with GRTUNCL3D.
• Source normalized to one.
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Phantom Lung
• One row of voxels from model based on 

reformatted CT data from the Department of 
Radiation Oncology at UNC Chapel Hill.

• Row passes through high and low density 
tissue.

• Voxels 1-7 are outside of phantom, set to 0.001 
g/cm3 in DOORS analysis.

• Source distributed over a 1 cm thick voxel at 
leading edge of model. 

• Energy distribution represents collimated beam.
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Energy Distribution of Source
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Position of Voxels on CT Image
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EGSnrc Photon Flux in Water Box
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TORT Photon Flux in Water Box
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Ratio of EGSnrc to TORT Photon Flux

Range is 
1.01 to 1.07
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EGSnrc Electron Flux in Water Box
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TORT Electron Flux in Water Box
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TORT Electron Flux in Water Box
• TORT photon flux was within about 5% of 

EGSnrc photon flux in all cases.
• TORT had disproportionately high electron flux 

in group 40.
• A source of only electrons was varied by group. 
• Groups 1 through 5: flux only in 1 through 5 and 

in 40.
• Beyond group 5: flux in every group beyond the 

source group.
• This anomaly may be due to oscillations in the 

TORT electron solution.
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ANISN Flux in Lung Phantom(1)

• ANISN agreed well with the EGSnrc results after 
voxel number 10 for photons and electrons.

• The Differences were 4.4% with S16 and 4mm 
mesh size and 4.2% with S64 and 1mm mesh size.

1D Total Photon Flux vs. Phantom Depth
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ANISN Flux in Lung Phantom(2)

• The agreement of the electron fluxes from both 
EGSnrc and ANISN is highly encouraging.

• ANISN results were in between EGSnrc and 
MCNP, which differed by 5%.

1D Total Electron Flux vs. Depth in Phantom
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ANISN Energy Deposition in Lung Phantom
Energy Deposition vs. Voxel Number
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• High by a factor of 3.8, but the general trend is correct.
• Treatment of the kerma factors needs further 

investigation. 
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DORT Flux in Lung Phantom
• For photon flux in most voxels had errors of less 

than 5%; the largest error was within 10%.
• DORT generally overestimated the electron flux 

by about 10%.
• Some error may have come from approximating 

a 1-D solution with a 2-D code, but was still not 
as good as ANISN case .

• The energy deposition exhibited the same 
behavior as in ANISN.

• This confirms the need to further investigate the 
kerma factors.
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TORT Flux in Lung Phantom
• TORT photon flux did not agree with EGSnrc.
• This is likely due to the implications of modeling a 

1-D problem in 3-D. 

TORT Total Photon Flux vs. Voxel Number
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Conclusions(1)

• The TORT results, coupled with the DORT 
results, suggest that the electron cross sections 
1) Are too large for the transport methods to 

give accurate answers in multi-D; or
2) Are erroneous due to processing with 

CEPXS-BFP; or
3) Large anisotropy might have made the Pn

scattering approximation too inaccurate.
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Conclusions(2)

• There is promise in continuing to investigate the use 
of discrete ordinates for RTP. 

• ANISN accurately produced photon and electron 
fluxes, but overestimated the energy deposition.

• DORT had promising electron flux results, but had 
the same energy deposition trend as ANISN.

• TORT exhibited strange group behavior of the 
electron flux. 

• The DOORS package proved to be able to handle 
some aspects of the charged particle transport, but 
also showed limitations. 
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Future Work
• Investigate why the energy deposition results from 

ANISN and DORT were off by a factor of almost 4 
(i.e. kerma factors). 

• Determine the source of electron flux error in 
multi-D.

• Future work could involve using the DOORS 
package and CEPXS-BFP as a foundation to 
develop a new code that incorporates the BFP 
formula for treating charged particles.
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