Surface Effects of Steady State He⁺ Implantation in CVD Silicon Carbide

S.J. Zenobia, G.L. Kulcinski, R.F. Radel HAPL Meeting-General Atomics August 8th, 2006

> Fusion Technology Institute University of Wisconsin-Madison

- The CVD Silicon Carbide (SiC) samples acquired from ORNL were irradiated in the UW IEC device to 1x10¹⁸ and 1x10¹⁹ He⁺/cm² at 750, 850, and 950 °C
- A partially masked SiC sample was irradiated to ${\sim}1.5{x}10^{19}$ He⁺/cm² at 950 °C
- FIB and SEM analysis has been performed to evaluate the surface damage on SiC as functions of temperature and fluence.
- Two abstracts have been submitted for the ANS-TOFE conference in November:
 - S.J. Zenobia, G.L. Kulcinski, and R.F. Radel. "Implantation of He⁺ in CVD Silicon Carbide"
 - R.F. Radel and G.L. Kulcinski. "Effects of High Temperature Pulsed Helium Implantation on Tungsten Surface Morphology"

Unirradiated SiC

SiC During Irradiation 950°C

Irradiation at 950°C Causes Both Flaking and Pore Formation of SiC Surface

7 minute runtime

35 kV, 6 mA (950<u>+</u>20 °C) 50 minute runtime

SEM Inspection Reveals Extensive Flaking After Irradiation of SiC Sample at 850° C

30 kV, 2 mA (850<u>+</u>20 °C) 19 minute runtime 30 kV, 3.5 mA (850<u>+</u>20 °C) 1 hour 52 minute runtime

Irradiation at 750°C also Causes Major Morphology Changes on SiC Surface

20 kV, 4 mA (750<u>+</u>20 °C) 9 minute runtime

30 kV, 2 mA (750<u>+</u>20 °C) 2 hour 44 minute runtime

SEM Analysis Shows Changes in Surface Morphology are a Function of Temperature

Fluence: 1x10¹⁹ He⁺/cm²

At 1x10¹⁹ He⁺/cm² and 850°C Surface Modifications on the Sample Exhibit Considerable Inhomogeneity

Masked SiC Sample Shows Visible Contrast Between Irradiated and Unirradiated Zones

30 kV, 5.5 mA, 950°C, ~1.5x10¹⁹ He⁺/cm², 147 minute runtime

Masked SiC Sample Surface Roughening is Due to Irradiation Not Temperature Exposure

30 kV, 5.5 mA, 950°C, ~1.5x10¹⁹ He⁺/cm², 147 minute runtime

Irradiated Zone of *Masked* SiC Sample Illustrates the Effects of Repeated Flaking

Sample Tilted 35° in SEM Stage

30 kV, 5.5 mA, 950°C, ~1.5x10¹⁹ He⁺/cm², 147 minute runtime

Steady State He⁺ Damage to SiC is Considerably Different That to W and W Alloy at 1x10¹⁹ He⁺/cm²

Conclusions

- Significant changes in SiC surface morphology occur at all temperatures (750 950 °C) and fluences (1x10¹⁸ He⁺/cm² to 1x10¹⁹ He⁺/cm²)
- At constant He⁺ fluence, the characteristic damage of the sample is a function of the temperature at which the sample is irradiated
- However, ion fluence NOT temperature, causes these surface morphology changes
- Substantial differences in surface damage are observed between all SiC samples and W and W-Re alloys

Possible Future Work

- More careful and detail measurements of mass loss and thickness loss over irradiated area (i.e. analysis with profilometer)
- Pulsed irradiation experiments with He⁺ for corresponding temperatures and ion fluence
- Steady state and pulsed deuterium ion implantation
- Simultaneous He⁺ and D₂⁺ implantation in both steady state and pulsed modes of the UW IEC device

Mass Losses Occurred for SiC Samples at all Temperatures and Fluences

- Preliminary results indicate mass losses ranging from 0.2 9 mg
- Certain variables that might effect mass loss calculations
 - Certain samples experienced minor chipping when tensioned in W-Re wire mount
 - Unpolished side of the samples were washed with etheron remove SEM tape residue
- Measured mass loss and corresponding hickness loss for irradiation and temperature is plotted below:

Massive Flaking and Pore Formation Appeared on the First SiC Samples Irradiated with He⁺

Top Portion of Sample

~950°C (Mid-Sample), 30kV, 8mA, 38 minute runtime

- HAPL total He dose (5 Hz, 10.5 m radius) is $\approx 6 \ge 10^{12}/\text{cm}^2$ per pulse (3 x 10¹³/cm²s ave.)
- IEC steady state He flux @ 6 mA \approx 10¹⁴/cm²s
- IEC pulsed instantaneous He flux (10 Hz, 1 ms, 60 mA) $\approx 10^{13}$ /cm² per pulse--->($\approx 10^{16}$ /cm²s)

The IEC Voltage Capability Covers Nearly 25% of the Ions at the First Wall

Implantation Covered a Small Range of the Helium Energy Spectrum

Range of Helium Ions in Tungsten

• Expand pulsed operation to pulse widths that are closer to Reference HAPL conditions

Pulsed IEC Irradiation Better Simulates HAPL Flux

10²⁰ He⁺/cm² steady-state (~1150 °C)

IEC Ion Implantation Process

