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•We are concerned with how ionization models and 
hydrodynamics models in target codes affect predictions of 
threats to IFE dry wall chambers.
•In this talk we will show how assumptions in the BUCKY 
target simulations change target output.
•We will conclude with recommended threat spectra.

OUTLINE
1. Physics and Methods
2. Target Implosion Physics
3. Target Output Energy Partition
4. Target Ion Spectra
5. Target X-ray Spectra
6. Closing Comments 
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Radiative Properties depends crucially on 
the opacity of the chamber gas
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���The opacity depends on:

•detailed (and in the case 
of chamber Xe, highly 
complicated) atomic 
physics, and

• Z*, the average charge 
state, and the population 
of the individual atomic 
levels.
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For the simulation of target output and chamber 
blast waves, the simplifying approximation of 

LTE is NOT appropriate
•If collisional processes dominate the rate equations, then the 
calculation of opacities reduces to the calculation of the energy 
level structure and statistical weights of the various relevant 
ionization stages. (Saha-Boltzmann Equilibrium)
•For that to be the case, the electron density must satisfy

•For propagation of blast waves in an IFE target chamber gas, 
the electron density is orders of magnitude too small to satisfy 
this relation, indeed, the coronal approximation is appropriate.
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• IONMIX
– Takes as input ionization potentials of the 

ground states of all the ionization stages of an 
element.

– Assumes hydrogenic energy level structure 
for excited states and the cross-sections of 
collisional and radiative properties.

– Solves CRE equations to determine ionization 
balance and level populations.

STRENGTH:  ZBar which interpolates appropriately 
between coronal and LTE values.

WEAKNESS:  Simplified atomic physics.

• EOSOPA (Z>18)
– Takes as input a list of configurations for each ionization 

stage.
– Generates detailed multi-electron atomic physics data 

(energy levels and dipole matrix elements) for all 
ionization stages by solving Hartree-Focke equations with 
relativistic corrections.

– Solves LTE (Saha) equations to determine ionization 
balance and UTA level populations.

– Linear Muffin Tin Orbital approximation to dense plasma 
effects

STRENGTH:  Spectroscopic quality atomic physics.
WEAKNESS: No radiative rates taken into account.  Strictly LTE.
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•Laser Rays are 
refracted by electron 
density profile.
•In the example, ne(r) 
= nc(rc/r)1.5 where 
rc=0.02 cm.
•Rays are initially 
parallel, but are 
refracted or absorbed 
by electrons.

2-D Laser Ray-Tracing Deposition Has Been Used to Calculate the 
Performance of High Yield Direct-Drive Targets

Critical
Surface

We are modeling the implosion, burn and explosion of High Yield Direct-Drive 
Targets. 

1. We need to have the detailed plasma conditions at ignition time to predict 
evolution afterwards.

2. All codes constitute a unique set of physical assumptions and numerical 
approaches, so BUCKY represents another opinion for implosion and yield.
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Radius, cm

-0.25 0 0.25

1 � CH + 300 Å Au

DT Vapor

DT Fuel
Foam + DT

1.875 mm
2.1125 mm

2.43973 mm

Time: 0.0 ns
Target radius: 0.244 cm
Critical radius: 0.244 cm

ZOOMING Improves Laser Coupling to the Target
Zooming:
1: Time: 29.8 ns
2: Time: 32.1 ns
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Radius, cm

-0.25 0 0.25

Time: 10.0 ns
Target radius: 0.344 cm
Critical radius: 0.233 cm

Zooming:
1: Time: 29.8 ns
2: Time: 32.1 ns

ZOOMING Improves Laser Coupling to the Target

1 � CH + 300 Å Au

DT Vapor

DT Fuel
Foam + DT

1.875 mm
2.1125 mm

2.43973 mm
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Radius, cm

-0.25 0 0.25

Time: 20.0 ns
Target radius: 0.527 cm
Critical radius: 0.228 cm

Zooming:
1: Time: 29.8 ns
2: Time: 32.1 ns

ZOOMING Improves Laser Coupling to the Target

1 � CH + 300 Å Au

DT Vapor

DT Fuel
Foam + DT

1.875 mm
2.1125 mm

2.43973 mm
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Radius, cm

-0.25 0 0.25

Time: 29.7 ns
Target radius: 0.834 cm
Critical radius: 0.180 cm

Zooming:
1: Time: 29.8 ns
2: Time: 32.1 ns

ZOOMING Improves Laser Coupling to the Target

1 � CH + 300 Å Au

DT Vapor

DT Fuel
Foam + DT

1.875 mm
2.1125 mm

2.43973 mm
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Radius, cm

-0.25 0 0.25

Time: 29.9 ns
Target radius: 0.843 cm
Critical radius: 0.179 cm

Zooming:
1: Time: 29.8 ns
2: Time: 32.1 ns

ZOOMING Improves Laser Coupling to the Target

1 � CH + 300 Å Au

DT Vapor

DT Fuel
Foam + DT

1.875 mm
2.1125 mm

2.43973 mm
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Radius, cm

-0.25 0 0.25

Time: 32.0 ns
Target radius: 0.952 cm
Critical radius: 0.132 cm

Zooming:
1: Time: 29.8 ns
2: Time: 32.1 ns

ZOOMING Improves Laser Coupling to the Target

1 � CH + 300 Å Au

DT Vapor

DT Fuel
Foam + DT

1.875 mm
2.1125 mm

2.43973 mm
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Radius, cm

-0.25 0 0.25

Time: 32.2 ns
Target radius: 0.965 cm
Critical radius: 0.131 cm

Zooming:
1: Time: 29.8 ns
2: Time: 32.1 ns

ZOOMING Improves Laser Coupling to the Target

1 � CH + 300 Å Au

DT Vapor

DT Fuel
Foam + DT

1.875 mm
2.1125 mm

2.43973 mm
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Radius, cm

-0.25 0 0.25

Time: 34.0 ns
Target radius: 1.086 cm
Critical radius: 0.078 cm

Zooming:
1: Time: 29.8 ns
2: Time: 32.1 ns

ZOOMING Improves Laser Coupling to the Target

1 � CH + 300 Å Au

DT Vapor

DT Fuel
Foam + DT

1.875 mm
2.1125 mm

2.43973 mm
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•Radiation from the Pd is absorbed in the ablator.
•There is an ionization edge at 22 ns at 0.24 cm.
•The radiation is absorbed at this edge.
•Small differences in the physics can lead to 
asymmetries.

We Have Achieved Ignition for the NRL High Yield 
Direct-Drive Radiation-Smoothed Laser Target

•Yield = 354 MJ
•Laser Energy = 2.9 MJ
•Deposited Laser Energy = 2.33 MJ
•Net Gain = 122
•Capsule Gain = 152
•EOSOPA used for Pd
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•There is an ionization edge at 16 ns at 0.24 cm.
•The radiation is absorbed at this position, leading 
to a radiation driven shock that is different from 
the EOSOPA calculation. 
•These differences are not reflected in the yield.

The IONMIX and EOSOPA Based Pd opacities give the 
same Yield but Differences in Implosion

•Yield = 356 MJ
•Laser Energy = 2.9 MJ
•Deposited Laser Energy = 2.33 MJ
•Net Gain = 123
•Capsule Gain = 153
•IONMIX used for Pd
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Energy Partition for Au and Pd-Coated Laser IFE Targets
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Pd-Coating on Direct-Drive Laser Target is Puffed up by 
Laser Then Shocked Off by Target Explosion 

•BUCKY model has 56 zones of Pd.
•Laser Heating of Pd blows it off of target
•EOSOPA opacity leads to more radiative cooling and slow expansion.
•Shock after ignition time causes rapid blow off.
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Disassembly of the Target is Driven by Energy Released in 
the Burning Core But Care is Taken in Collisional Limit

IONMIX Au
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We have reasons to doubt predictions 
of very high debris ion velocities
•Hydrodynamic approximation may 
not be valid because collisional mean-
free-path is larger than Lagrangain 
zones in gold.
•Zel’dovich and Raizer: Rarefaction 
velocity should not be greater than 
[2/(�-1)]cs.
•Quasi-neutrality is probably violated 
in Au/Pd shells.

Addressing weakness in 
pressure boundary conditions 
in Lagrangian (BUCKY) code
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Radiation Flows Quickly from Burning Fuel Through 
Ablator, Plastic, and Gold and Heats Electrons
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Radiation Spectrum is far from 
equilibrium
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BUCKY assumes Maxwellian electron 
velocity distribution so this is a “real” 
temperature.
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Debris Ion Spectrum from Au-Coated Direct-Drive Laser 
Target

•BUCKY assumes all electrons and ions move a the speed of the hydrodynamic 
zones where they reside.
•Ion energies = mv2/2.
•Z&R: velocities are limited to a few times the sound speed. 
•Escaped Fusion Products Included.  BUCKY uses Brysk model for fusion product 
deposition, what about Corman or Li and Petrasso? 
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Debris Ion Spectrum from Pd-Coated Direct-Drive Laser 
Target

•Pd ions at 10 MeV

•Au ions were at 30 – 40 MeV.

•About 20 MJ in Fusion Produced He. Same for Au IONMIX calculation.

•Very little difference between IONMIX and EOSOPA Pd opacity calculations
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X-ray Spectrum and Power for Pd-Coated Target
Is Somewhat Sensitive Ionization Model 

•Continuum part of spectrum is unchanged by choice of Pd opacity model; line 
emission is changed

•EOSOPA leads to more radiation from target before and after main burst.
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X-ray Spectrum and Power Predictions for Au-Coated 
Target Using IONMIX is Similar to Both Pd-Coated 

Target
•Only difference between Au and Pd target x-ray emission with IONMIX is used is 
in Line Emission
•Radiative power is very similar. 
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X-ray Radiation from Target is in a Very Narrow Spike

Pulse Width (FWHM)
•Pd EOSOPA: ~200 ps  
•Au EOSOPA: ~1.5 ns
•Au IONMIX: ~100 ps
•Pd IONMIX: ~150 ps
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•X-ray Pulse-width 
varies from Au to Pd 
and IONMIX to 
EOSOPA.
•All pulse-widths are 
small compared to 
thermal diffusion times 
in chamber walls.
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X-ray Emission for Au-Coated Target Using EOSOPA is 
Different from All other Calculations

•Au EOSOPA opacity table has been validated through burn through experiments 
on Nova
•Au EOSOPA emission is much stronger in sub-3 keV spectral region.
•High energy part of continuum is reduced due to lower yield.
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Conclusions
•Atomic physics and ionization play roles in Laser IFE target 
x-ray output.  The effect of model choice is reduced for Pd 
compared to Au.

•EOSOPA opacities predict greater radiative losses during 
implosion.

•In Pd target, model choice for Pd opacity affects details of 
radiation-driven shock in ablator, but the yield and ignition 
time is unchanged.

•Very high energy debris ions are due to numerical problems 
in Lagrangian hydrodynamics and are not physical.

•Radiation validation experiments are required for relevant 
plasma conditions and need to be considered when discussing 
IRE plans..
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