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Chamber Physics Critical Issues Involve Target Output, Gas 
Behavior and First Wall Response
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UW uses the BUCKY 1-D Radiation-Hydrodynamics Code to Simulate 
Target, Gas Behavior and Wall Response.

Question:  How accurate are 1-D Output Calculations?

Outline 
1. Laser Deposition
2. Burn Started from FAST-1D (NRL) Ignition Conditions
3. Ion Output
4. X-ray Output
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•Laser Rays are 
refracted by electron 
density profile.
•In the example, ne(r) 
= nc(rc/r)1.5 where 
rc=0.02 cm.
•Rays are initially 
parallel, but are 
refracted or absorbed 
by electrons.

•Normally incident rays are absorbed 
more strongly because some parallel 
rays are refracted out of the plasma. 
•Normally incident rays are absorbed 
nearer the critical surface, in a 
narrower region than parallel rays 
because of refraction.

New Laser Deposition Package for BUCKY Will Allow Us 
to Calculate Output Including Reflected Laser Light
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Implosion of High Yield Direct-Drive Laser Fusion 
Target with New BUCKY Laser Deposition Package
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Mass Density Profiles Just Before Ignition
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Implosion Yields 200 MJ

•Minor Differences Lead to Lower Yield.
•Peak mass density just before ignition is the same for FAST-1D and BUCKY, but density shape is a 
little different; the yield is 200 MJ versus 385 for Fast-1D.
•Need to use zooming consistent with NRL. 
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We Have Calculated Output from 2 NRL Targets 
Starting from NRL Supplied Ignition Conditions

Radiation Pre-Heated Direct-drive Laser Targets

DT Vapor

DT Fuel
Foam + DT

1 � CH + 300 Å Au

0.265g/cc
0.25 g/cc

1.50 mm
1.69 mm

1.95 mm

NRL (1999)

Laser Energy: 1.3 MJ
Laser Type: KrF
Gain: 150
Yield: 195 MJ

~165 MJ Yield

Energy Partitioning:
•149.7 MJ neutrons (76.8%)
•2.02 MJ x-rays (1.04%)
•34.0 MJ hydrodynamic ions (17.4%)
•1.06 MJ escaped fusion ions (0.54%)
•Error=2.3%

DT Vapor

DT Fuel
Foam + DT

1 � CH + 300 Å Au

0.265g/cc
0.25 g/cc

1.875 mm
2.1125 mm

2.4397 mm

NRL (2001)
~400 MJ Yield

Laser Energy: 2.5 MJ
Laser Type: KrF
Gain: 175
Yield: 437 MJ

Energy Partitioning:
•303.3 MJ neutrons (69.4%)
•2.67 MJ x-rays (0.61%)
•119.8 MJ hydrodynamic ions (27.4%)
•12.6 MJ escaped fusion ions (2.89%)
•Error = 0.3%
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Burn and Explosion of High Yield NRL Radiation 
Smoothed Direct-Drive Laser Fusion Target
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•Start from plasma 
conditions just before 
ignition from Denis 
Colombant.

•BUCKY specifically 
includes Compton 
scattering in  opacities.

•BUCKY predicts 430 MJ 
of yield compared with 
385 MJ from FAST-1D.

•Burn radiation 
“explodes” Au shell.
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Burn and Explosion of 165 MJ Yield NRL Radiation 
Smoothed Direct-Drive Laser Fusion Target

•Start from plasma conditions just before ignition from Andy Schmitt

•BUCKY specifically includes Compton scattering in  opacities.

•BUCKY predicts 195 MJ of yield compared with 165 MJ from FAST-1D.

•Passage of Burn radiation through Au shell depends on details of Gold Plasma (see 
course versus fine Au zoning).
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Explosion of Gold Shell in 400 MJ Target is 
Explained by Absorption of Target X-rays 
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Profiles im 400 MJ Target at 36 ns

•Gold begins to explode at 36 
ns.

•Gold opacity to 400 eV is 
much higher than other 
parts of corona.

•Radiation is attenuated in 
Gold

•100 eV electron 
temperature in gold leads to 
charge state of 40-45.
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Explosion of Gold Shell in 195 MJ Target is 
Explained by Absorption of Target X-rays 
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Profiles in 195 MJ Target at 27.5 ns

•Gold begins to explode at 
27.5 ns.

•Gold opacity to 2 keV is 
much higher than other 
parts of corona.

•Radiation is attenuated in 
Gold
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1-D Finely-Zoned BUCKY Runs for Gold-Coated Direct-
Drive Targets Predict High Energy Gold Ions  

•The particle energy of each species in each zone is then calculated as mv2/2 on the final time step of 
the BUCKY run.  This time is late enough that the ion energies are unchanging.  The numbers of 
ions of each species in each zone are plotted against ion energy.
•The spectra from direct fusion product D, T, H, He3, and He4 are calculated by BUCKY but 
they are not a significant part of the threat.

Ion Spectrum for 195 MJ Yield NRL Target Ion Spectrum for 437 MJ Yield NRL Target
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1-D Finely-Zoned BUCKY Runs for Gold-Coated Direct-
Drive Targets Predict Attenuation of Sub-keV X-rays  

•Finely-zoned calculations predict the heating of Au layers to the point where they 
are well-ionized to absorb sub-keV radiation from burn.
•A coarsely-zoned calculation does not attain sufficient opacity and sub-keV 
radiation passes through the Au layer.
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CONCLUSION: Let’s Get it Right

1. Ion and X-ray Spectra are very different for various calculations.
2. Plasma dynamics and opacity of Gold seems to be playing a big role.
3. Can we believe gold opacities?: LTE versus non-LTE.
4. All known direct-drive output calculations today are 1-D.  We believe 

that the gold layer may be hydro-dynamically unstable and will have 
plasma conditions (and opacity) different than modeled in 1-D.

5. What can we do?
a. More calculations by the next meeting (we only have a few tries at 

400 MJ) --- sensitivity versus opacity (Compton Scattering???).
b. Develop non-LTE Gold opacities.
c. Are there experiments we can do today?
d. Wait for NIF to ignite direct-drive targets?
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