A Decade of IEC Research at the University of Wisconsin

R.P. Ashley

E.C. Alderson, D.R. Boris, R.C. Giar, G.L. Kulcinski, G.R. Piefer, R.F. Radel, T.E. Radel, J.F. Santarius, and A.L. Wehmeyer

University of Wisconsin-Madison, Fusion Technology Institute 1500 Engineering Drive Madison WI 53706 (608) 265-3098

众的主要的

Thorsen et. al. Begin UW IEC Work in 1994

1st Paper published in 1997

Convergence, electrostatic potential, and density measurements in a spherically convergent ion focus

T. A. Thorson,^{a)} R. D. Durst, R. J. Fonck, and L. P. Wainwright University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706

Phys. Plasmas 4 (1), January 1997

FUSION REACTIVITY CHARACTERIZATION OF A SPHERICALLY CONVERGENT ION FOCUS

T.A. THORSON, R.D. DURST, R.J. FONCK, A.C. SONTAG University of Wisconsin-Madison.

NUCLEAR FUSION, Vol. 38, No. 4 (1998)

1st Steady State D-³He Fusion Produced on 25 Oct 1998

Three Sources of Fusion Reactions in an IEC Device Were Identified Using a Variable Size Eclipse Disk

Converged Core

Charge Exchange

Embedded Ion

Fusion Occurs Inside the Cathode

Fusion Occurs ThroughoutFusion CEntire Volume of the Chamberof the C

Fusion Occurs on the Surface of the Cathode Grid Wires

- All three sources can be present at the same time
- Fraction depends on voltage, fuel, pressure, and past history

Steady State D-D Neutron Records

^{94m}Tc & ¹³N Medical Isotopes Produced With D-³He Protons

Water Cooled Cathode Target for ¹³N

Water Cooled Wall Target for ¹³N

UW IEC History Timeline 2005 7th@LANL 2004 2003 6th @Tokyo Inst. Tech Standardization of Grid Fabrication 2002 5th@U. Of Wisconsin Medical Isotopes Produced 4th@Kyoto Univ. 2001 10⁸ D-D neutrons/sec Fusion source regions identified 3rd@MSFC 2000 **1st Steady State** D-³He fusion 2nd@Kansai Univ. 10^7 neutrons / sec 1999 75-200kV Capability 1st Published results (Thorson) 1995 1st@LANL IEC device constructed

Grid Fabrication System

1. Mold produced from prototype

2. Wires wound around wax form

3. Finished grid cathode

Ion Gun Constructed to Study Converged Core Operation

⁴He⁺ Beam Injected at 30 kV

Helicon Source Coupled to IEC Chamber

UW-IEC Has Been Used to Irradiate Tungsten Samples With D & He

- Polycrystalline
- Single Crystal
- Tungsten "Foam"
- 800-1200 C

As Received

1x10¹⁸ He /cm², 850 °C 1x10¹⁹ He /cm², 850 °C

Stalk and Grid Fabrication For Other IEC Groups

Stalk under high voltage test

A Happy Customer

Neutron Activation of Explosives Explored

Explosives Containment and Detection Assembly

Pulsed Operation of the Ion Source Has Been Demonstrated

Pulsing at 1 Hz Shows Plasma and Grid Wire Response

Upcoming Talks on IEC Activities At The University of Wisconsin

- Atomic Physics Effects on IEC Ion Radial Flow
 - Gil Emmert (Monday, 3:45 Pm)
- Helicon Ion Source
 - Greg Piefer (Tuesday, 8:30 Am)
- Neutron Activation of Explosives
 - Alex Wehmeyer (Tuesday, 9:30 Am)
- Implantation of Fusion First Wall Materials
 - Ross Radel (Tuesday, 10:45 Am)

