Detection of HEU Using a Pulsed D-D Fusion Source

R. Radel, G. Kulcinski, R. Ashley, J. Santarius, G. Piefer, D. Boris,B. Egle, C. Seyfert, S. Zenobia, E. Alderson, D. Donovan

University of Wisconsin

2006 TOFE Conference November 15th, 2006

duced hu Intraesity Communic

IEC Fusion-Based HEU Detection Concept

IEC Fusion-Based HEU Detection Concept

Pulsed Fusion Neutrons Induce Fissions within the Shipping Container

Wisconsin Design Uses Ion Source to Generate Pulses

Current Pulsed IEC Status

- Max Voltage: 115 kV
- Max Pulse Current: 3 Amps
- Max Neutron Rate: 1.8x10⁹ n/s
 - (96 kV, 2.9 A, 3 mTorr)
 - (500µs pulse width, 10 Hz)

Larger Cathode Yielded Higher Pulse Current and Neutron Rates

- Pulse current increased by ~20% when switching from 10 cm to 20 cm diameter cathode
- Average ion energy is higher
 - Ions encounter fewer neutrals as they are accelerated
 - Steady-state neutron production increased by ${\sim}80\%$ at 100 kV

Significant Progress has been Made Over the Past Year

Pulsed IEC Neutron Production

Pulsed Gate Ensures no Neutrons are Detected Between Pulses

Initial Neutron Detector Construction has Been Completed

Preliminary HEU Data Yields Promising Results

- Pulsed
 - 80 kV, 1 A pulse current, 2.5 mtorr D₂, 1 ms pulse width, ~6x10⁸ n/s
 - ~1.6 neutron counts/second between pulses with HEU
 - ~0.4 neutron counts/second background

Summary

- Pulsed IEC has been developed that is capable of operation at 115 kV, 3 A, 3 mTorr D_2
- Pulsed neutron rates of 1.8x10⁹ n/s have been achieved during 500 µs pulses
- MCNP results indicate that Wisconsin IEC device is capable of HEU detection experiments
- Detection circuitry has been tested, and has demonstrated HEU detection capability

Questions?

Ross Radel University of Wisconsin rfradel@wisc.edu