

Objective

in fusion first walls.

Inertial Electrostatic Confinement

inner cathode grid using an electrostatic potential difference.

discussed in this poster.

Conclusions

•Helium implantation to 10²⁰ He⁺/cm² at 1150 °C created substantial surface degradation and resulted in mass loss greater than that expected from physical sputtering.

• Simultaneous implantation of D⁺ and He⁺ at ~1150 °C created a lower pore density than pure He⁺ irradiation at 1×10^{18} ions/cm², but produced similar damage at higher fluences.

• Single crystal tungsten has a higher fluence threshold for the formation of surface pores than the polycrystalline tungsten at ~1100 °C and had a lower density of surface pores at higher helium fluences.

•Alloying tungsten with 25% rhenium does not appear to improve the resistance to damage from helium implantation at ~1150 °C.

Future Work

Elastic Recoil Detection Analysis

• Examine helium retention in 10²⁰ He⁺/cm² sample

• Evaluate deuterium retention rates and profiles using Elastic Recoil Detection analysis

Pulsed IEC Operation

• Pulsed operation will better simulate the operating conditions of an ICF reactor

• Repeat D^+ and He^+ Irradiations to 10^{19} ions/cm² with pulsed operation

Helium Bubble Depth Profiling

• Perform temperature scans on polycrystalline samples to study effects on bubble depth profile