

Effects of High Temperature Pulsed Helium Implantation on Tungsten Surface Morphology

R.F. Radel and G.L. Kulcinski 2006 TOFE Conference November 14th, 2006

Determine the effect of helium and deuterium implantation on the surface morphology of tungsten at high temperatures for High Averaged Power Laser (HAPL) project

- Why: To evaluate whether tungsten will serve as a suitable material for ICF first wall application
- How: Use IEC device to irradiate materials with He⁺ and D⁺ ions. Then use Scanning Electron Microscopy and Focused Ion Beam to determine morphology changes

IEC Cathode was Replaced with W Sample for Implantation Studies

Deuterium Implantation Caused Substantial Grain Growth

As Received

2x10¹⁹ D⁺/cm², 20-40 kV 1000-1300 °C

New Design Allows Pulsed IEC Operation

- Currently able to pulse up to 115 kV
- Operation has been performed with pulses as short as 100 μs
- Capable of running D₂ and/or He fuel gas

Pulsed Irradiation Caused Increased Damage to Tungsten Surface at 6x10¹⁸ He⁺/cm²

Pulsed Irradiation Created Coral-Like Tungsten Features at 10¹⁹ He⁺/cm²

10

2 hour runtime

30 kV, 6 mA Steady-State (1150<u>+</u>20 °C) 30 minute runtime

Mass Loss was Measured for Pulsed Tungsten Samples

- There has been no observable mass loss at fluences below 10¹⁹/cm² for steady-state irradiation at 1150 °C
- Measured mass loss and corresponding thickness loss for pulsed irradiation is shown below:

Helium Fluence	1x10 ¹⁹	6x10 ¹⁸	1x10 ¹⁸
Mass Loss (2 g sample)	4.2 <u>+</u> 0.1 mg	3.6 <u>+</u> 0.1 mg	0.5 <u>+</u> 0.1 mg
Thickness Loss	1.1 <u>+</u> 0.03 μm	0.93 <u>+</u> 0.03 μm	0.13 <u>+</u> 0.03 μm

1 ms pulse width, 25 Hz, 1150 °C

- Reference HAPL W armor could lose 50 µm/FPY (~1200 kg/FPY) due to low energy He irradiation alone
- Losses as high as 200 mm/FPY are predicted for full He spectra

Implications

- In ICF first walls and MFE divertors, the high density of small pores could act as:
 - Nucleation sites for cracks under repeated shock loading
 - Sites for initiating the formation of "dust"
 - Release sites for implanted He
- In IEC cathodes:
 - Embedded helium contributing to the D-³He rate appears to saturate around 10¹⁸ He/cm²
 - Sharp points created by pore formation may cause high voltage breakdown

Conclusions

- Switching from steady-state to pulsed irradiation at 1150 °C resulted in an increased surface roughening over 10¹⁸ to 10¹⁹ He⁺/cm² range
- Porous layer in tungsten was ~3x thicker after pulsed irradiation compared to steady-state
- Mass loss of tungsten armor in Reference HAPL design could be as much as 50 μ m/FPY (~1200 kg/FPY), which is well beyond calculated physical sputtering values

Questions?

Ross Radel University of Wisconsin rfradel@wisc.edu