High Fluence Implantation of Helium in Tungsten

R.F. Radel, G.L. Kulcinski, S.J. Zenobia HAPL Meeting-Rochester, NY November 9th, 2005

> Fusion Technology Institute University of Wisconsin-Madison

Progress Since the Last Meeting

- Tungsten sample has been irradiated to 10 times previous levels with energetic helium ions
- Characterization of high fluence (10²⁰ He⁺/cm²) irradiated sample has begun
- Work has begun on the development of pulsed IEC operation
- The He⁺ energy spectra on the first wall and the IEC sample temperatures were re-evaluated

The IEC Voltage Capability Covers Nearly 25% of the Ions at the First Wall

Helium Ion Energy Vacuum Spectra 365 MJ HAPL Target 1.E+20 IEC 1.E+19 ons 1.E+18 1.E+17 1.E+16 100 10 1000 10000 100000

Energy (keV)

Tungsten Samples Have Been Irradiated in the IEC Device

- Powder metallurgy samples
- Obtained from Lance Snead, Oak Ridge
- Polished finish
- Spot-welded on to a W-Re wire loop

IEC Run Extended He⁺ Implantation Database to 10²⁰ Ions/cm²

- Previous maximum fluence was 10¹⁹ He⁺/cm²
- Irradiation was performed at 30 kV, 6 mA, 0.5 mTorr, and 1150 °C
- This is equivalent to 20 effective full power days in the reference HAPL design (all helium energies)
- It is also equivalent to ~ 100 effective full power days in the reference HAPL design ($10 \text{ keV} < \text{He}^+ < 100 \text{ keV}$)

Higher Fluence Yielded Additional Pore Formation and Degradation of Surface 1150 °C

1x10¹⁹ He⁺/cm², 30 kV, 6mA

1x10²⁰ He⁺/cm², 30 kV, 6mA

High Temperature Irradiation of Tungsten Produced Drastic Changes in the Surface Morphology

Implications of Material Loss

- Reference HAPL chamber could lose 48 µm/FPY due to low energy He alone
- Physical sputtering from other light ions (H⁺, D⁺, T⁺) could contribute another 6 µm/FPY
- Additional damage from carbon and heavier ions could further increase this loss
- These processes could result in the formation of a minimum of ~80 kg/FPY of radioactive dust in the chamber

Systematic Pyrometer Malfunction Discovered

- Implication Past quoted temperature of W samples were too low by 100 to 300 °C.
- Pyrometer repair brought measured temperatures closer to theoretically calculated temperatures
- Current corrections now result in secondary electron emission coefficients of $\approx 2-3$ (more in line with measurements on other materials).
- These changes slightly affect temperatures quoted at PPPL (Fall '04), NRL (Spring '05), and LLNL (Summer '05)

Work has Begun on Pulsed IEC Operation

- Steady-state experiments have limited ability to simulated pulsed HAPL operation
- A new campaign has begun to develop pulsed IEC operation
- Initial experiments have shown promising results

Pulsed Experiments Will Provide More Realistic Tungsten Damage

Initial Pulsed IEC Operation has Shown Promising Results

High voltage pulsing circuit has been constructed and tested to 50 kV

Pulses have been run as low as ~100 µs pulse width, 1-100 Hz frequency, and up to 300 mA peak current

Video shows 30 kV operation at ~ 1Hz

Conclusions

- Increasing the helium fluence from 10¹⁹ He⁺/cm² to 10²⁰ He⁺/cm² resulted in an increased surface roughening
- Large fluences cause erosion of the tungsten first wall at 1150 °C beyond calculated physical sputtering values
- Pulsed IEC operation will allow irradiation at conditions closer to the reference HAPL design than previous experiments

Future Work

- Evaluate deuterium retention rates and profiles using Elastic Recoil Detection analysis
- Repeat D⁺ and He⁺ Irradiations to 10¹⁹ ions/cm² with pulsed operation

IEC Device Provides Steady-State and Pulsed Operation

Secondary Election Coefficient on Tungsten

Reference: Proc. Phys. Soc., 1963, vol. 81. "Secondary Electron Emission from a Clean Tungsten Surface Bombarded by various Positive Ions."

8 mTorr Xenon Backround Lowers Energy Spectrum

Helium-4 Ion Spectrum at Wall

