

# **Implantation of D<sup>+</sup> and He<sup>+</sup> in Candidate Fusion First Wall Materials**

## Background

### Motivation

The durability and lifetime of thin tungsten coatings on the first walls of inertial and magnetic confinement fusion reactors is a key issue for the feasibility of such devices. Past studies at UW-Madison have indicated that tungsten coatings, when subjected to He<sup>+</sup> fluences in excess of  $4x10^{17}$  He<sup>+</sup>/cm<sup>2</sup>, show extensive pore formation at 800 °C. The current study has investigated alternative forms of tungsten for future use in fusion devices.

### High Average Power Laser Program

Scientists from across the country are carrying out a multidisciplinary program to develop technologies for fusion energy and defense applications. This work is part of an ongoing effort to develop fusion first wall technology in conjunction with the HAPL program



### Inertial Electrostatic Confinement





The IEC fusion device was modified to conduct this set of experiments. The inner grid was replaced by solid target samples. The device was then run at lower pressure to ensure a more uniform ion energy distribution impacted the samples.

R.F. Radel, G.L. Kulcinski, R.P. Ashley, G.R. Piefer, A.L. Wehmeyer, D.R. Boris, J.F. Santarius, and T.E. Radel Fusion Technology Institute – University of Wisconsin-Madison

## Experimental

As-Received Samples





Samples have been received both directly from HAPL scientists and from Ultramet, a manufacturer of tungsten coated foam. SEM micrographs were taken of all samples both before and after irradiation in the IEC

### Cross-Section of Foam Ligaments



Reprinted with permission from Ultrame

The Ultramet samples are composed of a hollow TaC or HfC core with a chemical vapor infiltration technique used to coat the core with tungsten. The "high ε" foam has an extra layer of "black" dendritic W particles coating the sample.

### SEM Micrographs of W-Coated Foam



This series of micrographs of an as-received HfC sample shows the complex structure of the Ultramet Foam. The three types of foam appear similar at 50X magnification (the first picture), but vary significantly at higher magnification, as seen in the Results section.

| Sample         | lons                         | Fluence (#/cm2)     | Temperature (C) | Voltage (kV) |
|----------------|------------------------------|---------------------|-----------------|--------------|
| W-1            | <sup>4</sup> He <sup>+</sup> | 6x10 <sup>17</sup>  | 1100            | 40           |
| W-2            | <sup>4</sup> He <sup>+</sup> | 4x10 <sup>16</sup>  | 1100            | 40           |
| TaC-1          | $D^+$                        | >6x10 <sup>17</sup> | 800+            | up to 50     |
| TaC-2          | <sup>4</sup> He <sup>+</sup> | 6x10 <sup>17</sup>  | 830             | 30           |
| TaC-4          |                              |                     | 1200            |              |
| HfC-1          | <sup>4</sup> He <sup>+</sup> | 6x10 <sup>17</sup>  | 775             | 30           |
| HfC-4          |                              |                     | 1200            |              |
| TaC-1 (high e) | <sup>4</sup> He <sup>+</sup> | 6x10 <sup>17</sup>  | varied          | 30           |
| TaC-4 (high e) |                              |                     | 1200            |              |
| Single Crystal | <sup>4</sup> He <sup>+</sup> | 4x10 <sup>16</sup>  | 830             | 30           |

### Experimental Summary

## Results

### Single Crystal Tungsten Sample







### D<sup>+</sup> Implantation

He<sup>+</sup> on TaC and HfC Foams







High emissivity W-Coated Foam Deposited Side







High  $\varepsilon$ " Sample Before and After Annealing at 1200 C for 30 Minutes

### Non-Deposited Side



'High  $\varepsilon$ '' Sample Irradiated with a  $6 \times 10^{17}$  He<sup>+</sup>/cm<sup>2</sup> Fluence



## Conclusions

## Single Crystal

•At a fluence of  $4x10^{16}$  He<sup>+</sup>/cm<sup>2</sup>, single crystal tungsten showed less pore formation than polycrystalline tungsten at 800 °C

## D<sup>+</sup> vs He<sup>+</sup> Implantation on Foam

•D<sup>+</sup> implantation on TaC foam at  $>6x10^{17}$ ions/cm<sup>2</sup> showed no pore formation at 830 °C

•When subjected to a 6x10<sup>17</sup> He<sup>+</sup> fluence at 800 °C, both TaC and HfC samples showed pore formation similar to polycrystalline samples

## High Emissivity (ɛ) W Foam

•The uncoated side of the "high ε" foam showed similar damage to the TaC and HfC foams when subjected to fluences of  $6 \times 10^{17}$  $He^{+}/cm^{2}$ 

•The coated side showed growth in the tungsten dendrites

# Future Work

## Single Crystals

•High fluence irradiations at varying temperatures will be performed to determine the behavior of pore formation

## TaC and HfC Foams

•Fluence and temperature ranges will be expanded to evaluate foam performance as compared to polycrystalline samples

## Tungsten Rhenium

•Polycrystalline W-25%Re samples will be used to evaluate the performance of these samples for temperatures ranging from 700 - 1200 °C