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Overview of Inertial Confinement Fusion Stopping power models have complicated Significant capabilities have been added to Cooper is being developed as an open
consistency regions the radiation-hydrodynamics code, DRACO platform for modeling ICF relevant physics
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imploded using a high power (~100 TW) driver, high power lasers being the
most common driver. Ablation of the outer surface of the target drives a
series of radial shock waves into the target. These shock waves compress the

target and heat it to thermonuclear temperatures. High energy alpha particles
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Alpha particle transport is important for Mutually consistent models calculate New models have been incorporated into Stopping power measurement
modeling ICF ignition different stopping power values two-dimensional simulations brainstorming

* Alpha particle energy deposition is the mechanism - Implemented a library (Deeks) of 12 different models, « DRACO can now model radiative transfer using both Cooper is being used to model the deceleration phase of
for bootstrap heating with extensive consistency checks Monte Carlo and diffusion based methods target implosions

* Alpha particle heating raises plasma temperature, - Incorporated Deeks into UW-developed 1D multi- - Recently, the ability to directly model energetic Instability growth during this phase can effect target
increasing thermonuclear reaction rates, creating physics code BUCKY electrons has been added to the code performance
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ICF simulations have large ranges of plasma We are performing integrated simulations DRACO has been extended to function in 3D Cooper is currently being used to model the
temperatures and densities of Shock Ignition ICF targets Cartesian Geometry aftermath of a target implosion for a fusion
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- Large range of conditions makes choice of stopping * Targets imploded slowly - This code has been verified using comparisons to reactor design
power model ambiguous e —— ~ With lessened laser power analytic instability growth rates - After a target explodes,

* Plasma transitions from regimes dominated by requirements Comparison 1o Analytic Growth Rates debris will expand into the
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