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Motivation for Pulsed IEC-based
Fissile Material Detection Research

• There have been at least 150 incidents of nuclear 
smuggling in past decade, half involving special nuclear 
material (IAEA)

• As little as 16 kg of HEU or 6 kg of Pu can be used to 
produce a 20 kiloton weapon, even with low technology 
levels

• Developing technology for the detection of HEU has 
become a priority for the US Department of Homeland 
Security

• IEC technology can provide high fluxes of D-D or D-T 
neutrons for long lifetimes
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IEC Fusion-Based HEU 
Detection Concept
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Pulsed Fusion Neutrons Induce Fissions 
within the  Shipping Container
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Wisconsin Design Uses Ion Source 
to Generate Pulses
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Significant Progress has been Made 
Over the Past Two Years
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Pulsed IEC Neutron Production
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Fusion Cross-Sections Increase 
with Increased Ion Energy
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Neutron Rate vs. Cathode Voltage
3 mTorr D2
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Shorter Pulse Widths Generate 
Higher Intensity Pulses

 
Pulse Width Scan

60 kV Cathode, 3 mTorr D2
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Shorter Pulse Widths Generate 
Higher Intensity Pulses
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Neutron Rate vs. Pulse Width
60 kV (cathode), 3 Hz, 2.3 mTorr D2
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Pulsed IEC Capability Has Reached Levels 
Sufficient for Near-Term Application Research

• Max Cathode Voltage: 120 kV

• Max Pulse Current: 
– Deuterium:  6 Amps

• Max D-D Neutron Rate: 4.7x109 n/s
– (96 kV , 5 A, 0.33 Pa)
– (110μs pulse width, 5 Hz)
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MCNP Model Accurately Predicts 
Time-Dependent Neutron Behavior
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MCNP Model Accurately Predicts 
Time-Dependent Neutron Behavior
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HEU Detector Simulation
D-D point source-6x108 n/s, 11 grams of 93% enriched uranium (10 g U-235)
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Thermal Neutron Decay
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MCNP Model Accurately Predicts 
Time-Dependant Neutron Behavior
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Neutron Detector Construction 
Optimized Delayed Neutron Detection
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Delayed Neutrons vs. Time
(1x109 D-D n/s during 10,000 0.5 ms pulses at 10 Hz)
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Delayed Neutron Production Scaled 
Linearly with Fusion Neutron Rate

• HEU 50 cm from 
IEC center

• Detectors ~10 cm 
from HEU

18

Delayed Neutron Production
(500 μs pulse width, 10 Hz)
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Conclusions
• Numerous improvements were made to the 

pulsed IEC device:

– Pulsing circuitry was operated at voltages up to 120 kV
– Pulsed D+ currents in excess of 6 Amperes were achieved
– Pulse width studies revealed increased neutron production at 

shorter pulse widths

• Pulsed neutron production rates as high as 4.7x109 n/s
were generated during 110 μs pulses at 5 Hz. 
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Conclusions (cont.)
• An MCNP model was developed that accurately models the 

time-dependent behavior of pulsed IEC neutron production 
and the associated HEU detection hardware.
– This model was able to predict the number of delayed neutron counts 

collected in the 3He detectors to within approximately ±10%.

• Pulsed D-D neutron production rates as low as 4x108 n/s
generated in the UW-IEC were used to detect the presence of 
a 10 gram sample of uranium-235.
– Delayed neutron production was found to increase linearly with 

fusion neutron rates.
– Signal-to-noise ratios as high as 6.2 were found to exist when 65 kV 

remained on the cathode between fusion pulses.



Recommendations for Future Work

• Expand HEU detection study to look at effects of 
geometry and shielding

• Investigate Differential Die-Away technique
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Questions?

Ross Radel
University of Wisconsin
(Sandia National Laboratory)
heliumthreefusion@yahoo.com


