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g Motivation for Pulsed IEC-based g,

\ Fissile Material Detection Research Y

 There have been at least 150 incidents of nuclear
smuggling in past decade, half involving special nuclear
material (IAEA)

« As little as 16 kg of HEU or 6 kg of Pu can be used to
produce a 20 kiloton weapon, even with low technology
evels

« Developing technology for the detection of HEU has
pecome a priority for the US Department of Homeland
Security

« |EC technology can provide high fluxes of D-D or D-T
neutrons for long lifetimes



|EC Fusion-Based HEU
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Pulsed Fusion Neutrons Induce Fissions
within the Shipping Container

Source: Greg Sviatoslavsky 6
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Significant Progress has been Made
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Over the Past Two Years

Pulsed IEC Neutron Production
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Fusion Cross-Sections Increase

with Increased lon Energy

Neutron Rate vs. Cathode Voltage
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Shorter Pulse Widths Generate

Higher Intensity Pulses

Pulse Width Scan
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Shorter Pulse Widths Generate

Higher Intensity Pulses

Neutron Rate vs. Pulse Width
60 kV (cathode), 3 Hz,0.3 Pa D,
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Pulsed IEC Capability Has Reached Levels

Sufficient for Near-Term Application Research

e Max Cathode Voltage: 120 kV

e Max Pulse Current:
— Deuterium: 6 Amps

« Max D-D Neutron Rate: 4.7x10° n/s BN\
— (96 kV, 5 A, 0.33 Pa) A
— (110us pulse width, 5 Hz)
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MCNP Model Accurately Predicts g

Time-Dependent Neutr
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MCNP Model Accurately Predicts  ga
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Time-Dependent Neutron Behavior

HEU Detector Simulation
D-D point source-6x10° n/s, 11 grams of 93% enriched uranium (10 g U-235)
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MCNP Model Accurately Predicts g
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Time-Dependant Neutron Behavior

Thermal Neutron Decay
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£ Neutron Detector Construction )
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Levels of Delayed Fission Neutrons

Pulses Delayed Neutrons vs. Time
1x10° D-D n/s during 10,000 0.5 ms pulses at 10 Hz)
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Delayed Neutron Production Scaled

Linearly with Fusion Neutron Rate

e HEU 50 cm from
IEC center

e Detectors ~10 cm
from HEU

Delayed Neutrons Above Background

(Integrated for 2000 pulses)
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Conclusions

« Numerous improvements were made to the
pulsed IEC device:
— Pulsing circuitry was operated at voltages up to 120 kV

— Pulsed D* currents in excess of 6 Amperes were achieved

— Pulse width studies revealed increased neutron production at
shorter pulse widths

 Pulsed neutron production rates as high as 4.7x10° n/s
were generated during 110 us pulses at 5 Hz.
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% Conclusions (cont.) &

 An MCNP model was developed that accurately models the
time-dependent behavior of pulsed IEC neutron production
and the associated HEU detection hardware.

— This model was able to predict the number of delayed neutron counts
collected in the *He detectors to within approximately +10%.

e Pulsed D-D neutron production rates as low as 4x108 n/s
generated in the UW-IEC were used to detect the presence of
a 10 gram sample of uranium-235.

— Delayed neutron production was found to increase linearly with
fusion neutron rates.

— Signal-to-noise ratios as high as 6.2 were found to exist when 65 kV
remained on the cathode between fusion pulses.
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fwa Recommendations for Future Work

e Expand HEU detection study to look at effects of
geometry and shielding

 Investigate Differential Die-Away technique
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Questions?

Ross Radel

University of Wisconsin
(Sandia National Laboratory)
heliumthreefusion@yahoo.com



