

Acceleration Techniques For Direct Use of CAD-Based Geometries In Fusion Neutronics Analysis

Paul P.H. Wilson, Tim J. Tautges (ANL), Jason A. Kraftcheck, Brandon M. Smith, Douglass L. Henderson

U. Wisconsin-Madison

- Background
- Implementation
- Workflow and Related Tools
- Acceleration Techniques
- Benchmarking
- Applications

10/12/2009 ISFNT-9

Three Motivations for CAD-WISCONSIN Based Monte Carlo Tools

• Faster

- Reduce human effort
- Provide common domain for coupling to other analyses
- Cheaper
 - Reduce human effort
- Better
 - Avoid human error in conversion

- Include higher-order surface descriptions in analysis

10/12/2009 ISFNT-9

- MOAB
 - Mesh-Oriented dAtaBase (ITAPS)
 - Acceleration techniques based on mesh/geometry concepts
 - Native file format based on HDF5

Generate CAD Geometry

Annotate CAD Geometry Standard CAD software tools are used to define the solid model.

Models are exported to a standard geometric-model file format supported by Common Geometry Module (CGM).

Prepare Input File

DAG-MCNP5

Read Model and Initialize Search Tree

> Perform Random Walks

Report Tally Results

Workflow Includes a Variety of WISCONSIN New Tools and Skills

WISCONSIN New Tools and Skills

Workflow Includes a Variety of WISCONSIN New Tools and Skills

Workflow Includes a Variety of WISCONSIN New Tools and Skills

- Ray-tracing: fundamental operation of Monte Carlo transport
 - Ray-tracing on 2nd order analytic surfaces is efficient
 - Ray-tracing on arbitrary high-order surfaces requires high-order root finding
 - Also need to detect curves where surfaces meet
 - More complexity with high-order surfaces

- Imprint & merge
 - Reduce complexity of determining neighboring regions in space
- Faceting
 - Reduce ray-tracing to always be on (planar) facets, but
 - introduce approximations
 - millions of individual facets
- Oriented Bounding Box Tree
 - Accelerate search of millions of surfaces
 - Reduce number of surface tests

Accelerating the Neighboring WISCONSIN Cell Determination

10/12/2009 ISFNT-9

Avoiding the Explicit Calculation of the Second terms of t

- CAD-based solid models do not typically represent non-solid regions
 - -e.g. voids, coolants
- Explicit calculation
 - Boolean operations in CAD (or CUBIT)
 - Often computationally expensive
- Implicit determination

Volume bounded by surfaces with only 1 cell following imprint & merge

Accelerate Testing of Each WISCONSIN Bounding Box

- Simple (inexpensive) bounding box test
 - Streaming distance to closest approach
 - Collision
 distance to
 closest
 approach

Oriented Bounding Box on WISCONSIN Facets as Nodes in a Tree

- Axis-aligned bounding box often larger than necessary
- Oriented bounding box makes smaller boxes
- OBB on facets allows finer-granularity boxes to be arranged in tree

Tree Traversal Could Have $\frac{1}{MSCONSIN}$ O(log₂(n)) Bounding Box Tests

- Distance limit should guarantee improved performance
- Tree root for each cell/volume
 - Accelerate raytracing in implicit complement

OBB-Tree Traversal Performance WISCONSIN Tested on 3 Geometries

ITER Benchmark Complement

OBB Tree Performance Not WISCONSIN Scaling as Expected

Performance Compared Using WISCONSIN Translated Models

ITER Benchmark Model: >800 cells, ~10,000 surfaces

Translation

10/12/2009 ISFNT-9

 Performance of translation approaches vary by 60%

Model	Number of Volumes	Number of Surfaces	Relative CPU-Time
MCAM translation	4148	3192	1
McCad translation	6031	3800	1.63
DAGMC	802	9834	2.46

Sample Application: WISCONSIN First Wall & Shield Heating

- Module 4 installed in full ITER model
- 500 M neutron histories (240 cpu-days)
- Cartesian mesh tallies
 - varying resolution (3mm 10 mm) ~23 M voxels

10/12/2009 ISFNT-9

Nuclear Heating in M4 First Wall

W/cm

10/12/2009 ISFNT-9

Nuclear Heating in M4 Shield

DAG-MCNP5 Available For Use

- Requirements
 - Linux
 - Cubit 10.2 (Sandia National Laboratories)
 - MCNP5 source code (RSICC or NEA)
- Accompanying tools
 - MCNP->CAD converter
 - Mesh interpolation tools
- Coming developments
 - Conformal (body-fitted) mesh tallies
 - Coupling
 - Automated hybrid methods
 - Hi-fidelity activation/isotopics

Questions?

wilsonp@engr.wisc.edu

Nuclear Heating Misconsin Module 13 CFD Mesh

10/12/2009 ISFNT-9

- Space reactor analysis following large deformations
 - Mesh-based geometry is effectively the same as faceted representation

- ATR National User Facility experiment design
 - Allow experiment designers to more easily iterate

10/12/2009 ISFNT-9

- UW development platform
 - MCNPX 2.6.x
 - MCNP5
- External groups
 - -CEA: Tripoli-4
 - Implemented but not validated
 - -MIT: Geant-4
 - Early development