

Paul P.H. Wilson UW-Madison Fusion Technology Institute FNST Meeting 08.14.08

- DAGMC
 - -Ray-tracing acceleration technologies
- ITER First Wall & Shield Analysis
 - Mesh-interpolation for multi-physics analysis
- Future Developments
- Multi-physics Modeling & Simulation

 Common Domain Representation
 ITAPS SciDAC Tools

- Use MOAB and Common Geometry Module (CGM) to interface MC code *directly* to CAD (& other) geometry data
 - Previous efforts found CAD-based ray tracing to be too slow (20-50x)
 - What's new?
 - Implement ray-tracing approximations to reduce calls to exact CAD function
 - Can be implemented once & reused for all representations

MCNP(X)				
MCNPX Native Geometry		MOAB & CGM		
	CAD	Voxels	(Other)	

- Key issue: accelerate ray-tracing (fewer & faster)
- Key technology: oriented bounding box trees

Bounding Box Accelerations

- Simple (inexpensive) bounding box test
 - Streaming
 distance to
 closest
 approach
 - Collision
 distance to
 closest
 approach

Implicit Complement

- Defining void space is common source of difficulty
- CUBIT performs imprinting & merging
 - All surfaces have only two volumes/cells
 - Often fails with explicit complement
 - Defines implicit complement = all surfaces with only one cell
- New OBB tree collects all surfaces of each volume into single tree

- Efficient search of implicit complement

- Standard capability in production
 - Implicit complement can have material

ITER First Wall & Shield

- Modules designed at SNL
 - Includes structural, CFD, EM analyses
- Detailed distribution of nuclear heating
 - Mapping of radiation damage and He production

Model generated by designers using common tools facilitates analysis

FNST Meeting 08.14.08

Mesh Interpolation for Multi-Physics MISCONSIN Analysis

- High-fidelity mesh tallies in MCNP
 - Large orthogonal regular grids (e.g. 26M voxels)
- Interpolate to CFD & heat transfer analysis mesh
 - Large unstructured tet-mesh (e.g. 15M elements)
- Based on MOAB scalable open-source infrastructure
 - KD-tree for MCNP mesh elements
 - Centroid or vertex interpolation on piecewise uniform mesh
 - Store
 - Volumetric heating on vertices, and/or
 - Integral heating on elements

Nuclear Heating Misconsin Module 13 CFD Mesh

08.14.08

Nuclear Heating Module 13 CFD Mesh

DB: be_interp.vtk

Nuclear Heating WISCONSIN MODULE 13 CFD Mesh

Nuclear Heating MISCONSIN Module 13 CFD Mesh

FNST Meeting

08.14.08

16/22

- Conformal mesh tallies
 - -Efficient ray-tracing through mesh
 - -Functional expansion on mesh
 - hp-refinement questions
- Robustness to geometric flaws

 Transport approximations to small overlaps
- Hi-fidelity activation/isotopics
 Detailed photon dose

Multi-Physics Modeling & WISCONSIN Simulation

Paul Wilson (UW-FTI): Neutronics as Part of an Integrated Modeling Approach

08.14.08

Multi-Physics Modeling & Simulation

FNST Meeting Paul Wilson (UW-FTI): Neutronics as Part of an Integrated Modeling Approach 08.14.08

- Develop a common framework for representing the geometric (phase space) domain
- Benefits
 - Facilitate transfer of data among physics modules
 - Take advantage of ongoing development in tools and services
 - Optimization for performance of analysis
 - Optimization for performance of system

SciDAC-funded effort

http://www.tstt-scidac.org/research/research.html

FNST Meeting Paul Wilson (UW-FTI): Neutronics as Part of an Integrated Modeling Approach 08.14.08

Questions?

wilsonp@engr.wisc.edu http://fti.neep.wisc.edu/ncoe

